svn commit: r283035 - in head/sys/boot: common uboot/common uboot/lib

Ian Lepore ian at FreeBSD.org
Sun May 17 19:59:07 UTC 2015


Author: ian
Date: Sun May 17 19:59:05 2015
New Revision: 283035
URL: https://svnweb.freebsd.org/changeset/base/283035

Log:
  An ARM kernel can be loaded at any 2MB boundary, make ubldr aware of that.
  
  Previously, ubldr would use the virtual addresses in the elf headers by
  masking off the high bits and assuming the result was a physical address
  where the kernel should be loaded.  That would sometimes discard
  significant bits of the physical address, but the effects of that were
  undone by archsw copy code that would find a large block of memory and
  apply an offset to the source/dest copy addresses.  The result was that
  things were loaded at a different physical address than requested by the
  higher code layers, but that worked because other adjustments were applied
  later (such as when jumping to the entry point).  Very confusing, and
  somewhat fragile.
  
  Now the archsw copy routines are just simple copies, and instead
  archsw.arch_loadaddr is implemented to choose a load address.  The new
  routine uses some of the code from the old offset-translation routine to
  find the largest block of ram, but it excludes ubldr itself from that
  range, and also excludes   If ubldr splits the largest block of ram in
  two, the kernel is loaded into the bottom of whichever resulting block is
  larger.
  
  As part of eliminating ubldr itself from the ram ranges, export the heap
  start/end addresses in a pair of new global variables.
  
  This change means that the virtual addresses in the arm kernel elf headers
  now have no meaning at all, except for the entry point address.  There is
  an implicit assumption that the entry point is in the first text page, and
  that the address in the the header can be turned into an offset by masking
  it with PAGE_MASK.  In the future we can link all arm kernels at a virtual
  address of 0xC0000000 with no need to use any low-order part of the
  address to influence where in ram the kernel gets loaded.

Modified:
  head/sys/boot/common/load_elf.c
  head/sys/boot/uboot/common/main.c
  head/sys/boot/uboot/lib/copy.c
  head/sys/boot/uboot/lib/elf_freebsd.c
  head/sys/boot/uboot/lib/libuboot.h

Modified: head/sys/boot/common/load_elf.c
==============================================================================
--- head/sys/boot/common/load_elf.c	Sun May 17 18:35:58 2015	(r283034)
+++ head/sys/boot/common/load_elf.c	Sun May 17 19:59:05 2015	(r283035)
@@ -191,10 +191,17 @@ __elfN(loadfile_raw)(char *filename, u_i
 	    goto oerr;
 	}
 	/* 
-	 * Calculate destination address based on kernel entrypoint 	
+	 * Calculate destination address based on kernel entrypoint.
+	 *
+	 * For ARM, the destination address is independent of any values in the
+	 * elf header (an ARM kernel can be loaded at any 2MB boundary), so we
+	 * leave dest set to the value calculated by archsw.arch_loadaddr() and
+	 * passed in to this function.
 	 */
+#ifndef __arm__
         if (ehdr->e_type == ET_EXEC)
 	    dest = (ehdr->e_entry & ~PAGE_MASK);
+#endif
 	if ((ehdr->e_entry & ~PAGE_MASK) == 0) {
 	    printf("elf" __XSTRING(__ELF_WORD_SIZE) "_loadfile: not a kernel (maybe static binary?)\n");
 	    err = EPERM;
@@ -348,22 +355,18 @@ __elfN(loadimage)(struct preloaded_file 
 	    off = 0;
 #elif defined(__arm__)
 	/*
-	 * The elf headers in some kernels specify virtual addresses in all
-	 * header fields.  More recently, the e_entry and p_paddr fields are the
-	 * proper physical addresses.  Even when the p_paddr fields are correct,
-	 * the MI code below uses the p_vaddr fields with an offset added for
-	 * loading (doing so is arguably wrong).  To make loading work, we need
-	 * an offset that represents the difference between physical and virtual
-	 * addressing.  ARM kernels are always linked at 0xCnnnnnnn.  Depending
-	 * on the headers, the offset value passed in may be physical or virtual
-	 * (because it typically comes from e_entry), but we always replace
-	 * whatever is passed in with the va<->pa offset.  On the other hand, we
-	 * always remove the high-order part of the entry address whether it's
-	 * physical or virtual, because it will be adjusted later for the actual
-	 * physical entry point based on where the image gets loaded.
+	 * The elf headers in arm kernels specify virtual addresses in all
+	 * header fields, even the ones that should be physical addresses.
+	 * We assume the entry point is in the first page, and masking the page
+	 * offset will leave us with the virtual address the kernel was linked
+	 * at.  We subtract that from the load offset, making 'off' into the
+	 * value which, when added to a virtual address in an elf header,
+	 * translates it to a physical address.  We do the va->pa conversion on
+	 * the entry point address in the header now, so that later we can
+	 * launch the kernel by just jumping to that address.
 	 */
-	off = -0xc0000000;
-	ehdr->e_entry &= ~0xf0000000;
+	off -= ehdr->e_entry & ~PAGE_MASK;
+	ehdr->e_entry += off;
 #ifdef ELF_VERBOSE
 	printf("ehdr->e_entry 0x%08x, va<->pa off %llx\n", ehdr->e_entry, off);
 #endif

Modified: head/sys/boot/uboot/common/main.c
==============================================================================
--- head/sys/boot/uboot/common/main.c	Sun May 17 18:35:58 2015	(r283034)
+++ head/sys/boot/uboot/common/main.c	Sun May 17 19:59:05 2015	(r283035)
@@ -28,6 +28,7 @@
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
+#include <sys/param.h>
 
 #include <stand.h>
 
@@ -44,6 +45,9 @@ struct uboot_devdesc currdev;
 struct arch_switch archsw;		/* MI/MD interface boundary */
 int devs_no;
 
+uintptr_t uboot_heap_start;
+uintptr_t uboot_heap_end;
+
 struct device_type { 
 	const char *name;
 	int type;
@@ -414,7 +418,9 @@ main(void)
 	 * Initialise the heap as early as possible.  Once this is done,
 	 * alloc() is usable. The stack is buried inside us, so this is safe.
 	 */
-	setheap((void *)end, (void *)(end + 512 * 1024));
+	uboot_heap_start = round_page((uintptr_t)end);
+	uboot_heap_end   = uboot_heap_start + 512 * 1024;
+	setheap((void *)uboot_heap_start, (void *)uboot_heap_end);
 
 	/*
 	 * Set up console.
@@ -487,6 +493,7 @@ main(void)
 	setenv("LINES", "24", 1);		/* optional */
 	setenv("prompt", "loader>", 1);
 
+	archsw.arch_loadaddr = uboot_loadaddr;
 	archsw.arch_getdev = uboot_getdev;
 	archsw.arch_copyin = uboot_copyin;
 	archsw.arch_copyout = uboot_copyout;

Modified: head/sys/boot/uboot/lib/copy.c
==============================================================================
--- head/sys/boot/uboot/lib/copy.c	Sun May 17 18:35:58 2015	(r283034)
+++ head/sys/boot/uboot/lib/copy.c	Sun May 17 19:59:05 2015	(r283035)
@@ -27,66 +27,131 @@
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
+#include <sys/param.h>
 
 #include <stand.h>
 #include <stdint.h>
 
 #include "api_public.h"
 #include "glue.h"
+#include "libuboot.h"
 
 /*
  * MD primitives supporting placement of module data 
  */
 
-void *
-uboot_vm_translate(vm_offset_t o) {
+#ifdef __arm__
+#define	KERN_ALIGN	(2 * 1024 * 1024)
+#else
+#define	KERN_ALIGN	PAGE_SIZE
+#endif
+
+/*
+ * Avoid low memory, u-boot puts things like args and dtb blobs there.
+ */
+#define	KERN_MINADDR	max(KERN_ALIGN, (1024 * 1024))
+
+extern void _start(void); /* ubldr entry point address. */
+
+/*
+ * This is called for every object loaded (kernel, module, dtb file, etc).  The
+ * expected return value is the next address at or after the given addr which is
+ * appropriate for loading the given object described by type and data.  On each
+ * call the addr is the next address following the previously loaded object.
+ *
+ * The first call is for loading the kernel, and the addr argument will be zero,
+ * and we search for a big block of ram to load the kernel and modules.
+ *
+ * On subsequent calls the addr will be non-zero, and we just round it up so
+ * that each object begins on a page boundary.
+ */
+uint64_t
+uboot_loadaddr(u_int type, void *data, uint64_t addr)
+{
 	struct sys_info *si;
-	static uintptr_t start = 0;
-	static size_t size = 0;
+	uintptr_t sblock, eblock, subldr, eubldr;
+	uintptr_t biggest_block, this_block;
+	size_t biggest_size, this_size;
 	int i;
+	char * envstr;
+
+	if (addr == 0) {
+		/*
+		 * If the loader_kernaddr environment variable is set, blindly
+		 * honor it.  It had better be right.  We force interpretation
+		 * of the value in base-16 regardless of any leading 0x prefix,
+		 * because that's the U-Boot convention.
+		 */
+		envstr = ub_env_get("loader_kernaddr");
+		if (envstr != NULL)
+			return (strtoul(envstr, NULL, 16));
 
-	if (size == 0) {
+		/*
+		 *  Find addr/size of largest DRAM block.  Carve our own address
+		 *  range out of the block, because loading the kernel over the
+		 *  top ourself is a poor memory-conservation strategy. Avoid
+		 *  memory at beginning of the first block of physical ram,
+		 *  since u-boot likes to pass args and data there.  Assume that
+		 *  u-boot has moved itself to the very top of ram and
+		 *  optimistically assume that we won't run into it up there.
+		 */
 		if ((si = ub_get_sys_info()) == NULL)
 			panic("could not retrieve system info");
 
-		/* Find start/size of largest DRAM block. */
+		biggest_block = 0;
+		biggest_size = 0;
+		subldr = rounddown2((uintptr_t)_start, KERN_ALIGN);
+		eubldr = roundup2(uboot_heap_end, KERN_ALIGN);
 		for (i = 0; i < si->mr_no; i++) {
-			if (si->mr[i].flags == MR_ATTR_DRAM
-			    && si->mr[i].size > size) {
-				start = si->mr[i].start;
-				size = si->mr[i].size;
+			if (si->mr[i].flags != MR_ATTR_DRAM)
+				continue;
+			sblock = roundup2(si->mr[i].start, KERN_ALIGN);
+			eblock = rounddown2(si->mr[i].start + si->mr[i].size,
+			    KERN_ALIGN);
+			if (biggest_size == 0)
+				sblock += KERN_MINADDR;
+			if (subldr >= sblock && subldr < eblock) {
+				if (subldr - sblock > eblock - eubldr) {
+					this_block = sblock;
+					this_size  = subldr - sblock;
+				} else {
+					this_block = eubldr;
+					this_size = eblock - eubldr;
+				}
+			}
+			if (biggest_size < this_size) {
+				biggest_block = this_block;
+				biggest_size  = this_size;
 			}
 		}
-
-		if (size <= 0)
-			panic("No suitable DRAM?\n");
-		/*
-		printf("Loading into memory region 0x%08X-0x%08X (%d MiB)\n",
-		    start, start + size, size / 1024 / 1024);
-		*/
+		if (biggest_size == 0)
+			panic("Not enough DRAM to load kernel\n");
+#if 0
+		printf("Loading kernel into region 0x%08x-0x%08x (%u MiB)\n",
+		    biggest_block, biggest_block + biggest_size - 1, 
+		    biggest_size / 1024 / 1024);
+#endif
+		return (biggest_block);
 	}
-	if (o > size)
-		panic("Address offset 0x%08jX bigger than size 0x%08X\n",
-		      (intmax_t)o, size);
-	return (void *)(start + o);
+	return roundup2(addr, PAGE_SIZE);
 }
 
 ssize_t
 uboot_copyin(const void *src, vm_offset_t dest, const size_t len)
 {
-	bcopy(src, uboot_vm_translate(dest), len);
+	bcopy(src, (void *)dest, len);
 	return (len);
 }
 
 ssize_t
 uboot_copyout(const vm_offset_t src, void *dest, const size_t len)
 {
-	bcopy(uboot_vm_translate(src), dest, len);
+	bcopy((void *)src, dest, len);
 	return (len);
 }
 
 ssize_t
 uboot_readin(const int fd, vm_offset_t dest, const size_t len)
 {
-	return (read(fd, uboot_vm_translate(dest), len));
+	return (read(fd, (void *)dest, len));
 }

Modified: head/sys/boot/uboot/lib/elf_freebsd.c
==============================================================================
--- head/sys/boot/uboot/lib/elf_freebsd.c	Sun May 17 18:35:58 2015	(r283034)
+++ head/sys/boot/uboot/lib/elf_freebsd.c	Sun May 17 19:59:05 2015	(r283035)
@@ -80,7 +80,7 @@ __elfN(uboot_exec)(struct preloaded_file
 	if ((error = md_load(fp->f_args, &mdp)) != 0)
 		return (error);
 
-	entry = uboot_vm_translate(e->e_entry);
+	entry = (void *)e->e_entry;
 	printf("Kernel entry at 0x%x...\n", (unsigned)entry);
 
 	dev_cleanup();

Modified: head/sys/boot/uboot/lib/libuboot.h
==============================================================================
--- head/sys/boot/uboot/lib/libuboot.h	Sun May 17 18:35:58 2015	(r283034)
+++ head/sys/boot/uboot/lib/libuboot.h	Sun May 17 19:59:05 2015	(r283035)
@@ -57,7 +57,10 @@ extern int devs_no;
 extern struct netif_driver uboot_net;
 extern struct devsw uboot_storage;
 
-void *uboot_vm_translate(vm_offset_t);
+extern uintptr_t uboot_heap_start;
+extern uintptr_t uboot_heap_end;
+
+uint64_t uboot_loadaddr(u_int type, void *data, uint64_t addr);
 ssize_t	uboot_copyin(const void *src, vm_offset_t dest, const size_t len);
 ssize_t	uboot_copyout(const vm_offset_t src, void *dest, const size_t len);
 ssize_t	uboot_readin(const int fd, vm_offset_t dest, const size_t len);


More information about the svn-src-head mailing list