svn commit: r362593 - in vendor/llvm-project/release-10.x: clang/include/clang/Driver clang/lib/Basic/Targets clang/lib/Driver clang/lib/Driver/ToolChains/Arch llvm/include/llvm/CodeGen llvm/includ...

Dimitry Andric dim at FreeBSD.org
Wed Jun 24 20:22:46 UTC 2020


Author: dim
Date: Wed Jun 24 20:22:44 2020
New Revision: 362593
URL: https://svnweb.freebsd.org/changeset/base/362593

Log:
  Vendor import of llvm-project branch release/10.x
  llvmorg-10.0.0-129-gd24d5c8e308.

Added:
  vendor/llvm-project/release-10.x/llvm/include/llvm/CodeGen/RDFGraph.h   (contents, props changed)
  vendor/llvm-project/release-10.x/llvm/include/llvm/CodeGen/RDFLiveness.h   (contents, props changed)
  vendor/llvm-project/release-10.x/llvm/include/llvm/CodeGen/RDFRegisters.h   (contents, props changed)
  vendor/llvm-project/release-10.x/llvm/lib/CodeGen/RDFGraph.cpp   (contents, props changed)
  vendor/llvm-project/release-10.x/llvm/lib/CodeGen/RDFLiveness.cpp   (contents, props changed)
  vendor/llvm-project/release-10.x/llvm/lib/CodeGen/RDFRegisters.cpp   (contents, props changed)
  vendor/llvm-project/release-10.x/llvm/lib/Target/X86/ImmutableGraph.h   (contents, props changed)
  vendor/llvm-project/release-10.x/llvm/lib/Target/X86/X86IndirectThunks.cpp   (contents, props changed)
  vendor/llvm-project/release-10.x/llvm/lib/Target/X86/X86LoadValueInjectionLoadHardening.cpp   (contents, props changed)
  vendor/llvm-project/release-10.x/llvm/lib/Target/X86/X86LoadValueInjectionRetHardening.cpp   (contents, props changed)
Deleted:
  vendor/llvm-project/release-10.x/llvm/lib/Target/Hexagon/RDFGraph.cpp
  vendor/llvm-project/release-10.x/llvm/lib/Target/Hexagon/RDFGraph.h
  vendor/llvm-project/release-10.x/llvm/lib/Target/Hexagon/RDFLiveness.cpp
  vendor/llvm-project/release-10.x/llvm/lib/Target/Hexagon/RDFLiveness.h
  vendor/llvm-project/release-10.x/llvm/lib/Target/Hexagon/RDFRegisters.cpp
  vendor/llvm-project/release-10.x/llvm/lib/Target/Hexagon/RDFRegisters.h
  vendor/llvm-project/release-10.x/llvm/lib/Target/X86/X86RetpolineThunks.cpp
Modified:
  vendor/llvm-project/release-10.x/clang/include/clang/Driver/Options.td
  vendor/llvm-project/release-10.x/clang/lib/Basic/Targets/PPC.h
  vendor/llvm-project/release-10.x/clang/lib/Driver/SanitizerArgs.cpp
  vendor/llvm-project/release-10.x/clang/lib/Driver/ToolChain.cpp
  vendor/llvm-project/release-10.x/clang/lib/Driver/ToolChains/Arch/X86.cpp
  vendor/llvm-project/release-10.x/llvm/include/llvm/IR/IntrinsicsPowerPC.td
  vendor/llvm-project/release-10.x/llvm/include/llvm/Support/ManagedStatic.h
  vendor/llvm-project/release-10.x/llvm/include/llvm/Target/TargetSelectionDAG.td
  vendor/llvm-project/release-10.x/llvm/lib/Analysis/BasicAliasAnalysis.cpp
  vendor/llvm-project/release-10.x/llvm/lib/LTO/LTO.cpp
  vendor/llvm-project/release-10.x/llvm/lib/Target/BPF/BPFISelDAGToDAG.cpp
  vendor/llvm-project/release-10.x/llvm/lib/Target/BPF/BTFDebug.cpp
  vendor/llvm-project/release-10.x/llvm/lib/Target/Hexagon/HexagonOptAddrMode.cpp
  vendor/llvm-project/release-10.x/llvm/lib/Target/Hexagon/HexagonRDFOpt.cpp
  vendor/llvm-project/release-10.x/llvm/lib/Target/Hexagon/RDFCopy.cpp
  vendor/llvm-project/release-10.x/llvm/lib/Target/Hexagon/RDFCopy.h
  vendor/llvm-project/release-10.x/llvm/lib/Target/Hexagon/RDFDeadCode.cpp
  vendor/llvm-project/release-10.x/llvm/lib/Target/Hexagon/RDFDeadCode.h
  vendor/llvm-project/release-10.x/llvm/lib/Target/PowerPC/P9InstrResources.td
  vendor/llvm-project/release-10.x/llvm/lib/Target/PowerPC/PPCISelLowering.cpp
  vendor/llvm-project/release-10.x/llvm/lib/Target/PowerPC/PPCISelLowering.h
  vendor/llvm-project/release-10.x/llvm/lib/Target/PowerPC/PPCInstrAltivec.td
  vendor/llvm-project/release-10.x/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp
  vendor/llvm-project/release-10.x/llvm/lib/Target/PowerPC/PPCInstrVSX.td
  vendor/llvm-project/release-10.x/llvm/lib/Target/X86/X86.h
  vendor/llvm-project/release-10.x/llvm/lib/Target/X86/X86.td
  vendor/llvm-project/release-10.x/llvm/lib/Target/X86/X86FastISel.cpp
  vendor/llvm-project/release-10.x/llvm/lib/Target/X86/X86FrameLowering.cpp
  vendor/llvm-project/release-10.x/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp
  vendor/llvm-project/release-10.x/llvm/lib/Target/X86/X86ISelLowering.cpp
  vendor/llvm-project/release-10.x/llvm/lib/Target/X86/X86ISelLowering.h
  vendor/llvm-project/release-10.x/llvm/lib/Target/X86/X86InstrCompiler.td
  vendor/llvm-project/release-10.x/llvm/lib/Target/X86/X86InstrControl.td
  vendor/llvm-project/release-10.x/llvm/lib/Target/X86/X86InstrInfo.td
  vendor/llvm-project/release-10.x/llvm/lib/Target/X86/X86MCInstLower.cpp
  vendor/llvm-project/release-10.x/llvm/lib/Target/X86/X86Subtarget.h
  vendor/llvm-project/release-10.x/llvm/lib/Target/X86/X86TargetMachine.cpp
  vendor/llvm-project/release-10.x/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp

Modified: vendor/llvm-project/release-10.x/clang/include/clang/Driver/Options.td
==============================================================================
--- vendor/llvm-project/release-10.x/clang/include/clang/Driver/Options.td	Wed Jun 24 19:51:03 2020	(r362592)
+++ vendor/llvm-project/release-10.x/clang/include/clang/Driver/Options.td	Wed Jun 24 20:22:44 2020	(r362593)
@@ -2267,6 +2267,14 @@ def mspeculative_load_hardening : Flag<["-"], "mspecul
   Group<m_Group>, Flags<[CoreOption,CC1Option]>;
 def mno_speculative_load_hardening : Flag<["-"], "mno-speculative-load-hardening">,
   Group<m_Group>, Flags<[CoreOption]>;
+def mlvi_hardening : Flag<["-"], "mlvi-hardening">, Group<m_Group>, Flags<[CoreOption,DriverOption]>,
+  HelpText<"Enable all mitigations for Load Value Injection (LVI)">;
+def mno_lvi_hardening : Flag<["-"], "mno-lvi-hardening">, Group<m_Group>, Flags<[CoreOption,DriverOption]>,
+  HelpText<"Disable mitigations for Load Value Injection (LVI)">;
+def mlvi_cfi : Flag<["-"], "mlvi-cfi">, Group<m_Group>, Flags<[CoreOption,DriverOption]>,
+  HelpText<"Enable only control-flow mitigations for Load Value Injection (LVI)">;
+def mno_lvi_cfi : Flag<["-"], "mno-lvi-cfi">, Group<m_Group>, Flags<[CoreOption,DriverOption]>,
+  HelpText<"Disable control-flow mitigations for Load Value Injection (LVI)">;
 
 def mrelax : Flag<["-"], "mrelax">, Group<m_riscv_Features_Group>,
   HelpText<"Enable linker relaxation">;

Modified: vendor/llvm-project/release-10.x/clang/lib/Basic/Targets/PPC.h
==============================================================================
--- vendor/llvm-project/release-10.x/clang/lib/Basic/Targets/PPC.h	Wed Jun 24 19:51:03 2020	(r362592)
+++ vendor/llvm-project/release-10.x/clang/lib/Basic/Targets/PPC.h	Wed Jun 24 20:22:44 2020	(r362593)
@@ -276,11 +276,12 @@ class LLVM_LIBRARY_VISIBILITY PPCTargetInfo : public T
       break;
     case 'Q': // Memory operand that is an offset from a register (it is
               // usually better to use `m' or `es' in asm statements)
+      Info.setAllowsRegister();
+      LLVM_FALLTHROUGH;
     case 'Z': // Memory operand that is an indexed or indirect from a
               // register (it is usually better to use `m' or `es' in
               // asm statements)
       Info.setAllowsMemory();
-      Info.setAllowsRegister();
       break;
     case 'R': // AIX TOC entry
     case 'a': // Address operand that is an indexed or indirect from a

Modified: vendor/llvm-project/release-10.x/clang/lib/Driver/SanitizerArgs.cpp
==============================================================================
--- vendor/llvm-project/release-10.x/clang/lib/Driver/SanitizerArgs.cpp	Wed Jun 24 19:51:03 2020	(r362592)
+++ vendor/llvm-project/release-10.x/clang/lib/Driver/SanitizerArgs.cpp	Wed Jun 24 20:22:44 2020	(r362593)
@@ -454,8 +454,7 @@ SanitizerArgs::SanitizerArgs(const ToolChain &TC,
         << lastArgumentForMask(D, Args, Kinds & NeedsLTO) << "-flto";
   }
 
-  if ((Kinds & SanitizerKind::ShadowCallStack) &&
-      TC.getTriple().getArch() == llvm::Triple::aarch64 &&
+  if ((Kinds & SanitizerKind::ShadowCallStack) && TC.getTriple().isAArch64() &&
       !llvm::AArch64::isX18ReservedByDefault(TC.getTriple()) &&
       !Args.hasArg(options::OPT_ffixed_x18)) {
     D.Diag(diag::err_drv_argument_only_allowed_with)

Modified: vendor/llvm-project/release-10.x/clang/lib/Driver/ToolChain.cpp
==============================================================================
--- vendor/llvm-project/release-10.x/clang/lib/Driver/ToolChain.cpp	Wed Jun 24 19:51:03 2020	(r362592)
+++ vendor/llvm-project/release-10.x/clang/lib/Driver/ToolChain.cpp	Wed Jun 24 20:22:44 2020	(r362593)
@@ -954,15 +954,12 @@ SanitizerMask ToolChain::getSupportedSanitizers() cons
   if (getTriple().getArch() == llvm::Triple::x86 ||
       getTriple().getArch() == llvm::Triple::x86_64 ||
       getTriple().getArch() == llvm::Triple::arm ||
-      getTriple().getArch() == llvm::Triple::aarch64 ||
       getTriple().getArch() == llvm::Triple::wasm32 ||
-      getTriple().getArch() == llvm::Triple::wasm64)
+      getTriple().getArch() == llvm::Triple::wasm64 || getTriple().isAArch64())
     Res |= SanitizerKind::CFIICall;
-  if (getTriple().getArch() == llvm::Triple::x86_64 ||
-      getTriple().getArch() == llvm::Triple::aarch64)
+  if (getTriple().getArch() == llvm::Triple::x86_64 || getTriple().isAArch64())
     Res |= SanitizerKind::ShadowCallStack;
-  if (getTriple().getArch() == llvm::Triple::aarch64 ||
-      getTriple().getArch() == llvm::Triple::aarch64_be)
+  if (getTriple().isAArch64())
     Res |= SanitizerKind::MemTag;
   return Res;
 }

Modified: vendor/llvm-project/release-10.x/clang/lib/Driver/ToolChains/Arch/X86.cpp
==============================================================================
--- vendor/llvm-project/release-10.x/clang/lib/Driver/ToolChains/Arch/X86.cpp	Wed Jun 24 19:51:03 2020	(r362592)
+++ vendor/llvm-project/release-10.x/clang/lib/Driver/ToolChains/Arch/X86.cpp	Wed Jun 24 20:22:44 2020	(r362593)
@@ -146,6 +146,7 @@ void x86::getX86TargetFeatures(const Driver &D, const 
   // flags). This is a bit hacky but keeps existing usages working. We should
   // consider deprecating this and instead warn if the user requests external
   // retpoline thunks and *doesn't* request some form of retpolines.
+  auto SpectreOpt = clang::driver::options::ID::OPT_INVALID;
   if (Args.hasArgNoClaim(options::OPT_mretpoline, options::OPT_mno_retpoline,
                          options::OPT_mspeculative_load_hardening,
                          options::OPT_mno_speculative_load_hardening)) {
@@ -153,12 +154,14 @@ void x86::getX86TargetFeatures(const Driver &D, const 
                      false)) {
       Features.push_back("+retpoline-indirect-calls");
       Features.push_back("+retpoline-indirect-branches");
+      SpectreOpt = options::OPT_mretpoline;
     } else if (Args.hasFlag(options::OPT_mspeculative_load_hardening,
                             options::OPT_mno_speculative_load_hardening,
                             false)) {
       // On x86, speculative load hardening relies on at least using retpolines
       // for indirect calls.
       Features.push_back("+retpoline-indirect-calls");
+      SpectreOpt = options::OPT_mspeculative_load_hardening;
     }
   } else if (Args.hasFlag(options::OPT_mretpoline_external_thunk,
                           options::OPT_mno_retpoline_external_thunk, false)) {
@@ -166,6 +169,26 @@ void x86::getX86TargetFeatures(const Driver &D, const 
     // eventually switch to an error here.
     Features.push_back("+retpoline-indirect-calls");
     Features.push_back("+retpoline-indirect-branches");
+    SpectreOpt = options::OPT_mretpoline_external_thunk;
+  }
+
+  auto LVIOpt = clang::driver::options::ID::OPT_INVALID;
+  if (Args.hasFlag(options::OPT_mlvi_hardening, options::OPT_mno_lvi_hardening,
+                   false)) {
+    Features.push_back("+lvi-load-hardening");
+    Features.push_back("+lvi-cfi"); // load hardening implies CFI protection
+    LVIOpt = options::OPT_mlvi_hardening;
+  } else if (Args.hasFlag(options::OPT_mlvi_cfi, options::OPT_mno_lvi_cfi,
+                          false)) {
+    Features.push_back("+lvi-cfi");
+    LVIOpt = options::OPT_mlvi_cfi;
+  }
+
+  if (SpectreOpt != clang::driver::options::ID::OPT_INVALID &&
+      LVIOpt != clang::driver::options::ID::OPT_INVALID) {
+    D.Diag(diag::err_drv_argument_not_allowed_with)
+        << D.getOpts().getOptionName(SpectreOpt)
+        << D.getOpts().getOptionName(LVIOpt);
   }
 
   // Now add any that the user explicitly requested on the command line,

Added: vendor/llvm-project/release-10.x/llvm/include/llvm/CodeGen/RDFGraph.h
==============================================================================
--- /dev/null	00:00:00 1970	(empty, because file is newly added)
+++ vendor/llvm-project/release-10.x/llvm/include/llvm/CodeGen/RDFGraph.h	Wed Jun 24 20:22:44 2020	(r362593)
@@ -0,0 +1,968 @@
+//===- RDFGraph.h -----------------------------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Target-independent, SSA-based data flow graph for register data flow (RDF)
+// for a non-SSA program representation (e.g. post-RA machine code).
+//
+//
+// *** Introduction
+//
+// The RDF graph is a collection of nodes, each of which denotes some element
+// of the program. There are two main types of such elements: code and refe-
+// rences. Conceptually, "code" is something that represents the structure
+// of the program, e.g. basic block or a statement, while "reference" is an
+// instance of accessing a register, e.g. a definition or a use. Nodes are
+// connected with each other based on the structure of the program (such as
+// blocks, instructions, etc.), and based on the data flow (e.g. reaching
+// definitions, reached uses, etc.). The single-reaching-definition principle
+// of SSA is generally observed, although, due to the non-SSA representation
+// of the program, there are some differences between the graph and a "pure"
+// SSA representation.
+//
+//
+// *** Implementation remarks
+//
+// Since the graph can contain a large number of nodes, memory consumption
+// was one of the major design considerations. As a result, there is a single
+// base class NodeBase which defines all members used by all possible derived
+// classes. The members are arranged in a union, and a derived class cannot
+// add any data members of its own. Each derived class only defines the
+// functional interface, i.e. member functions. NodeBase must be a POD,
+// which implies that all of its members must also be PODs.
+// Since nodes need to be connected with other nodes, pointers have been
+// replaced with 32-bit identifiers: each node has an id of type NodeId.
+// There are mapping functions in the graph that translate between actual
+// memory addresses and the corresponding identifiers.
+// A node id of 0 is equivalent to nullptr.
+//
+//
+// *** Structure of the graph
+//
+// A code node is always a collection of other nodes. For example, a code
+// node corresponding to a basic block will contain code nodes corresponding
+// to instructions. In turn, a code node corresponding to an instruction will
+// contain a list of reference nodes that correspond to the definitions and
+// uses of registers in that instruction. The members are arranged into a
+// circular list, which is yet another consequence of the effort to save
+// memory: for each member node it should be possible to obtain its owner,
+// and it should be possible to access all other members. There are other
+// ways to accomplish that, but the circular list seemed the most natural.
+//
+// +- CodeNode -+
+// |            | <---------------------------------------------------+
+// +-+--------+-+                                                     |
+//   |FirstM  |LastM                                                  |
+//   |        +-------------------------------------+                 |
+//   |                                              |                 |
+//   V                                              V                 |
+//  +----------+ Next +----------+ Next       Next +----------+ Next  |
+//  |          |----->|          |-----> ... ----->|          |----->-+
+//  +- Member -+      +- Member -+                 +- Member -+
+//
+// The order of members is such that related reference nodes (see below)
+// should be contiguous on the member list.
+//
+// A reference node is a node that encapsulates an access to a register,
+// in other words, data flowing into or out of a register. There are two
+// major kinds of reference nodes: defs and uses. A def node will contain
+// the id of the first reached use, and the id of the first reached def.
+// Each def and use will contain the id of the reaching def, and also the
+// id of the next reached def (for def nodes) or use (for use nodes).
+// The "next node sharing the same reaching def" is denoted as "sibling".
+// In summary:
+// - Def node contains: reaching def, sibling, first reached def, and first
+// reached use.
+// - Use node contains: reaching def and sibling.
+//
+// +-- DefNode --+
+// | R2 = ...    | <---+--------------------+
+// ++---------+--+     |                    |
+//  |Reached  |Reached |                    |
+//  |Def      |Use     |                    |
+//  |         |        |Reaching            |Reaching
+//  |         V        |Def                 |Def
+//  |      +-- UseNode --+ Sib  +-- UseNode --+ Sib       Sib
+//  |      | ... = R2    |----->| ... = R2    |----> ... ----> 0
+//  |      +-------------+      +-------------+
+//  V
+// +-- DefNode --+ Sib
+// | R2 = ...    |----> ...
+// ++---------+--+
+//  |         |
+//  |         |
+// ...       ...
+//
+// To get a full picture, the circular lists connecting blocks within a
+// function, instructions within a block, etc. should be superimposed with
+// the def-def, def-use links shown above.
+// To illustrate this, consider a small example in a pseudo-assembly:
+// foo:
+//   add r2, r0, r1   ; r2 = r0+r1
+//   addi r0, r2, 1   ; r0 = r2+1
+//   ret r0           ; return value in r0
+//
+// The graph (in a format used by the debugging functions) would look like:
+//
+//   DFG dump:[
+//   f1: Function foo
+//   b2: === %bb.0 === preds(0), succs(0):
+//   p3: phi [d4<r0>(,d12,u9):]
+//   p5: phi [d6<r1>(,,u10):]
+//   s7: add [d8<r2>(,,u13):, u9<r0>(d4):, u10<r1>(d6):]
+//   s11: addi [d12<r0>(d4,,u15):, u13<r2>(d8):]
+//   s14: ret [u15<r0>(d12):]
+//   ]
+//
+// The f1, b2, p3, etc. are node ids. The letter is prepended to indicate the
+// kind of the node (i.e. f - function, b - basic block, p - phi, s - state-
+// ment, d - def, u - use).
+// The format of a def node is:
+//   dN<R>(rd,d,u):sib,
+// where
+//   N   - numeric node id,
+//   R   - register being defined
+//   rd  - reaching def,
+//   d   - reached def,
+//   u   - reached use,
+//   sib - sibling.
+// The format of a use node is:
+//   uN<R>[!](rd):sib,
+// where
+//   N   - numeric node id,
+//   R   - register being used,
+//   rd  - reaching def,
+//   sib - sibling.
+// Possible annotations (usually preceding the node id):
+//   +   - preserving def,
+//   ~   - clobbering def,
+//   "   - shadow ref (follows the node id),
+//   !   - fixed register (appears after register name).
+//
+// The circular lists are not explicit in the dump.
+//
+//
+// *** Node attributes
+//
+// NodeBase has a member "Attrs", which is the primary way of determining
+// the node's characteristics. The fields in this member decide whether
+// the node is a code node or a reference node (i.e. node's "type"), then
+// within each type, the "kind" determines what specifically this node
+// represents. The remaining bits, "flags", contain additional information
+// that is even more detailed than the "kind".
+// CodeNode's kinds are:
+// - Phi:   Phi node, members are reference nodes.
+// - Stmt:  Statement, members are reference nodes.
+// - Block: Basic block, members are instruction nodes (i.e. Phi or Stmt).
+// - Func:  The whole function. The members are basic block nodes.
+// RefNode's kinds are:
+// - Use.
+// - Def.
+//
+// Meaning of flags:
+// - Preserving: applies only to defs. A preserving def is one that can
+//   preserve some of the original bits among those that are included in
+//   the register associated with that def. For example, if R0 is a 32-bit
+//   register, but a def can only change the lower 16 bits, then it will
+//   be marked as preserving.
+// - Shadow: a reference that has duplicates holding additional reaching
+//   defs (see more below).
+// - Clobbering: applied only to defs, indicates that the value generated
+//   by this def is unspecified. A typical example would be volatile registers
+//   after function calls.
+// - Fixed: the register in this def/use cannot be replaced with any other
+//   register. A typical case would be a parameter register to a call, or
+//   the register with the return value from a function.
+// - Undef: the register in this reference the register is assumed to have
+//   no pre-existing value, even if it appears to be reached by some def.
+//   This is typically used to prevent keeping registers artificially live
+//   in cases when they are defined via predicated instructions. For example:
+//     r0 = add-if-true cond, r10, r11                (1)
+//     r0 = add-if-false cond, r12, r13, implicit r0  (2)
+//     ... = r0                                       (3)
+//   Before (1), r0 is not intended to be live, and the use of r0 in (3) is
+//   not meant to be reached by any def preceding (1). However, since the
+//   defs in (1) and (2) are both preserving, these properties alone would
+//   imply that the use in (3) may indeed be reached by some prior def.
+//   Adding Undef flag to the def in (1) prevents that. The Undef flag
+//   may be applied to both defs and uses.
+// - Dead: applies only to defs. The value coming out of a "dead" def is
+//   assumed to be unused, even if the def appears to be reaching other defs
+//   or uses. The motivation for this flag comes from dead defs on function
+//   calls: there is no way to determine if such a def is dead without
+//   analyzing the target's ABI. Hence the graph should contain this info,
+//   as it is unavailable otherwise. On the other hand, a def without any
+//   uses on a typical instruction is not the intended target for this flag.
+//
+// *** Shadow references
+//
+// It may happen that a super-register can have two (or more) non-overlapping
+// sub-registers. When both of these sub-registers are defined and followed
+// by a use of the super-register, the use of the super-register will not
+// have a unique reaching def: both defs of the sub-registers need to be
+// accounted for. In such cases, a duplicate use of the super-register is
+// added and it points to the extra reaching def. Both uses are marked with
+// a flag "shadow". Example:
+// Assume t0 is a super-register of r0 and r1, r0 and r1 do not overlap:
+//   set r0, 1        ; r0 = 1
+//   set r1, 1        ; r1 = 1
+//   addi t1, t0, 1   ; t1 = t0+1
+//
+// The DFG:
+//   s1: set [d2<r0>(,,u9):]
+//   s3: set [d4<r1>(,,u10):]
+//   s5: addi [d6<t1>(,,):, u7"<t0>(d2):, u8"<t0>(d4):]
+//
+// The statement s5 has two use nodes for t0: u7" and u9". The quotation
+// mark " indicates that the node is a shadow.
+//
+
+#ifndef LLVM_LIB_TARGET_HEXAGON_RDFGRAPH_H
+#define LLVM_LIB_TARGET_HEXAGON_RDFGRAPH_H
+
+#include "RDFRegisters.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/MC/LaneBitmask.h"
+#include "llvm/Support/Allocator.h"
+#include "llvm/Support/MathExtras.h"
+#include <cassert>
+#include <cstdint>
+#include <cstring>
+#include <map>
+#include <set>
+#include <unordered_map>
+#include <utility>
+#include <vector>
+
+// RDF uses uint32_t to refer to registers. This is to ensure that the type
+// size remains specific. In other places, registers are often stored using
+// unsigned.
+static_assert(sizeof(uint32_t) == sizeof(unsigned), "Those should be equal");
+
+namespace llvm {
+
+class MachineBasicBlock;
+class MachineDominanceFrontier;
+class MachineDominatorTree;
+class MachineFunction;
+class MachineInstr;
+class MachineOperand;
+class raw_ostream;
+class TargetInstrInfo;
+class TargetRegisterInfo;
+
+namespace rdf {
+
+  using NodeId = uint32_t;
+
+  struct DataFlowGraph;
+
+  struct NodeAttrs {
+    enum : uint16_t {
+      None          = 0x0000,   // Nothing
+
+      // Types: 2 bits
+      TypeMask      = 0x0003,
+      Code          = 0x0001,   // 01, Container
+      Ref           = 0x0002,   // 10, Reference
+
+      // Kind: 3 bits
+      KindMask      = 0x0007 << 2,
+      Def           = 0x0001 << 2,  // 001
+      Use           = 0x0002 << 2,  // 010
+      Phi           = 0x0003 << 2,  // 011
+      Stmt          = 0x0004 << 2,  // 100
+      Block         = 0x0005 << 2,  // 101
+      Func          = 0x0006 << 2,  // 110
+
+      // Flags: 7 bits for now
+      FlagMask      = 0x007F << 5,
+      Shadow        = 0x0001 << 5,  // 0000001, Has extra reaching defs.
+      Clobbering    = 0x0002 << 5,  // 0000010, Produces unspecified values.
+      PhiRef        = 0x0004 << 5,  // 0000100, Member of PhiNode.
+      Preserving    = 0x0008 << 5,  // 0001000, Def can keep original bits.
+      Fixed         = 0x0010 << 5,  // 0010000, Fixed register.
+      Undef         = 0x0020 << 5,  // 0100000, Has no pre-existing value.
+      Dead          = 0x0040 << 5,  // 1000000, Does not define a value.
+    };
+
+    static uint16_t type(uint16_t T)  { return T & TypeMask; }
+    static uint16_t kind(uint16_t T)  { return T & KindMask; }
+    static uint16_t flags(uint16_t T) { return T & FlagMask; }
+
+    static uint16_t set_type(uint16_t A, uint16_t T) {
+      return (A & ~TypeMask) | T;
+    }
+
+    static uint16_t set_kind(uint16_t A, uint16_t K) {
+      return (A & ~KindMask) | K;
+    }
+
+    static uint16_t set_flags(uint16_t A, uint16_t F) {
+      return (A & ~FlagMask) | F;
+    }
+
+    // Test if A contains B.
+    static bool contains(uint16_t A, uint16_t B) {
+      if (type(A) != Code)
+        return false;
+      uint16_t KB = kind(B);
+      switch (kind(A)) {
+        case Func:
+          return KB == Block;
+        case Block:
+          return KB == Phi || KB == Stmt;
+        case Phi:
+        case Stmt:
+          return type(B) == Ref;
+      }
+      return false;
+    }
+  };
+
+  struct BuildOptions {
+    enum : unsigned {
+      None          = 0x00,
+      KeepDeadPhis  = 0x01,   // Do not remove dead phis during build.
+    };
+  };
+
+  template <typename T> struct NodeAddr {
+    NodeAddr() = default;
+    NodeAddr(T A, NodeId I) : Addr(A), Id(I) {}
+
+    // Type cast (casting constructor). The reason for having this class
+    // instead of std::pair.
+    template <typename S> NodeAddr(const NodeAddr<S> &NA)
+      : Addr(static_cast<T>(NA.Addr)), Id(NA.Id) {}
+
+    bool operator== (const NodeAddr<T> &NA) const {
+      assert((Addr == NA.Addr) == (Id == NA.Id));
+      return Addr == NA.Addr;
+    }
+    bool operator!= (const NodeAddr<T> &NA) const {
+      return !operator==(NA);
+    }
+
+    T Addr = nullptr;
+    NodeId Id = 0;
+  };
+
+  struct NodeBase;
+
+  // Fast memory allocation and translation between node id and node address.
+  // This is really the same idea as the one underlying the "bump pointer
+  // allocator", the difference being in the translation. A node id is
+  // composed of two components: the index of the block in which it was
+  // allocated, and the index within the block. With the default settings,
+  // where the number of nodes per block is 4096, the node id (minus 1) is:
+  //
+  // bit position:                11             0
+  // +----------------------------+--------------+
+  // | Index of the block         |Index in block|
+  // +----------------------------+--------------+
+  //
+  // The actual node id is the above plus 1, to avoid creating a node id of 0.
+  //
+  // This method significantly improved the build time, compared to using maps
+  // (std::unordered_map or DenseMap) to translate between pointers and ids.
+  struct NodeAllocator {
+    // Amount of storage for a single node.
+    enum { NodeMemSize = 32 };
+
+    NodeAllocator(uint32_t NPB = 4096)
+        : NodesPerBlock(NPB), BitsPerIndex(Log2_32(NPB)),
+          IndexMask((1 << BitsPerIndex)-1) {
+      assert(isPowerOf2_32(NPB));
+    }
+
+    NodeBase *ptr(NodeId N) const {
+      uint32_t N1 = N-1;
+      uint32_t BlockN = N1 >> BitsPerIndex;
+      uint32_t Offset = (N1 & IndexMask) * NodeMemSize;
+      return reinterpret_cast<NodeBase*>(Blocks[BlockN]+Offset);
+    }
+
+    NodeId id(const NodeBase *P) const;
+    NodeAddr<NodeBase*> New();
+    void clear();
+
+  private:
+    void startNewBlock();
+    bool needNewBlock();
+
+    uint32_t makeId(uint32_t Block, uint32_t Index) const {
+      // Add 1 to the id, to avoid the id of 0, which is treated as "null".
+      return ((Block << BitsPerIndex) | Index) + 1;
+    }
+
+    const uint32_t NodesPerBlock;
+    const uint32_t BitsPerIndex;
+    const uint32_t IndexMask;
+    char *ActiveEnd = nullptr;
+    std::vector<char*> Blocks;
+    using AllocatorTy = BumpPtrAllocatorImpl<MallocAllocator, 65536>;
+    AllocatorTy MemPool;
+  };
+
+  using RegisterSet = std::set<RegisterRef>;
+
+  struct TargetOperandInfo {
+    TargetOperandInfo(const TargetInstrInfo &tii) : TII(tii) {}
+    virtual ~TargetOperandInfo() = default;
+
+    virtual bool isPreserving(const MachineInstr &In, unsigned OpNum) const;
+    virtual bool isClobbering(const MachineInstr &In, unsigned OpNum) const;
+    virtual bool isFixedReg(const MachineInstr &In, unsigned OpNum) const;
+
+    const TargetInstrInfo &TII;
+  };
+
+  // Packed register reference. Only used for storage.
+  struct PackedRegisterRef {
+    RegisterId Reg;
+    uint32_t MaskId;
+  };
+
+  struct LaneMaskIndex : private IndexedSet<LaneBitmask> {
+    LaneMaskIndex() = default;
+
+    LaneBitmask getLaneMaskForIndex(uint32_t K) const {
+      return K == 0 ? LaneBitmask::getAll() : get(K);
+    }
+
+    uint32_t getIndexForLaneMask(LaneBitmask LM) {
+      assert(LM.any());
+      return LM.all() ? 0 : insert(LM);
+    }
+
+    uint32_t getIndexForLaneMask(LaneBitmask LM) const {
+      assert(LM.any());
+      return LM.all() ? 0 : find(LM);
+    }
+  };
+
+  struct NodeBase {
+  public:
+    // Make sure this is a POD.
+    NodeBase() = default;
+
+    uint16_t getType()  const { return NodeAttrs::type(Attrs); }
+    uint16_t getKind()  const { return NodeAttrs::kind(Attrs); }
+    uint16_t getFlags() const { return NodeAttrs::flags(Attrs); }
+    NodeId   getNext()  const { return Next; }
+
+    uint16_t getAttrs() const { return Attrs; }
+    void setAttrs(uint16_t A) { Attrs = A; }
+    void setFlags(uint16_t F) { setAttrs(NodeAttrs::set_flags(getAttrs(), F)); }
+
+    // Insert node NA after "this" in the circular chain.
+    void append(NodeAddr<NodeBase*> NA);
+
+    // Initialize all members to 0.
+    void init() { memset(this, 0, sizeof *this); }
+
+    void setNext(NodeId N) { Next = N; }
+
+  protected:
+    uint16_t Attrs;
+    uint16_t Reserved;
+    NodeId Next;                // Id of the next node in the circular chain.
+    // Definitions of nested types. Using anonymous nested structs would make
+    // this class definition clearer, but unnamed structs are not a part of
+    // the standard.
+    struct Def_struct  {
+      NodeId DD, DU;          // Ids of the first reached def and use.
+    };
+    struct PhiU_struct  {
+      NodeId PredB;           // Id of the predecessor block for a phi use.
+    };
+    struct Code_struct {
+      void *CP;               // Pointer to the actual code.
+      NodeId FirstM, LastM;   // Id of the first member and last.
+    };
+    struct Ref_struct {
+      NodeId RD, Sib;         // Ids of the reaching def and the sibling.
+      union {
+        Def_struct Def;
+        PhiU_struct PhiU;
+      };
+      union {
+        MachineOperand *Op;   // Non-phi refs point to a machine operand.
+        PackedRegisterRef PR; // Phi refs store register info directly.
+      };
+    };
+
+    // The actual payload.
+    union {
+      Ref_struct Ref;
+      Code_struct Code;
+    };
+  };
+  // The allocator allocates chunks of 32 bytes for each node. The fact that
+  // each node takes 32 bytes in memory is used for fast translation between
+  // the node id and the node address.
+  static_assert(sizeof(NodeBase) <= NodeAllocator::NodeMemSize,
+        "NodeBase must be at most NodeAllocator::NodeMemSize bytes");
+
+  using NodeList = SmallVector<NodeAddr<NodeBase *>, 4>;
+  using NodeSet = std::set<NodeId>;
+
+  struct RefNode : public NodeBase {
+    RefNode() = default;
+
+    RegisterRef getRegRef(const DataFlowGraph &G) const;
+
+    MachineOperand &getOp() {
+      assert(!(getFlags() & NodeAttrs::PhiRef));
+      return *Ref.Op;
+    }
+
+    void setRegRef(RegisterRef RR, DataFlowGraph &G);
+    void setRegRef(MachineOperand *Op, DataFlowGraph &G);
+
+    NodeId getReachingDef() const {
+      return Ref.RD;
+    }
+    void setReachingDef(NodeId RD) {
+      Ref.RD = RD;
+    }
+
+    NodeId getSibling() const {
+      return Ref.Sib;
+    }
+    void setSibling(NodeId Sib) {
+      Ref.Sib = Sib;
+    }
+
+    bool isUse() const {
+      assert(getType() == NodeAttrs::Ref);
+      return getKind() == NodeAttrs::Use;
+    }
+
+    bool isDef() const {
+      assert(getType() == NodeAttrs::Ref);
+      return getKind() == NodeAttrs::Def;
+    }
+
+    template <typename Predicate>
+    NodeAddr<RefNode*> getNextRef(RegisterRef RR, Predicate P, bool NextOnly,
+        const DataFlowGraph &G);
+    NodeAddr<NodeBase*> getOwner(const DataFlowGraph &G);
+  };
+
+  struct DefNode : public RefNode {
+    NodeId getReachedDef() const {
+      return Ref.Def.DD;
+    }
+    void setReachedDef(NodeId D) {
+      Ref.Def.DD = D;
+    }
+    NodeId getReachedUse() const {
+      return Ref.Def.DU;
+    }
+    void setReachedUse(NodeId U) {
+      Ref.Def.DU = U;
+    }
+
+    void linkToDef(NodeId Self, NodeAddr<DefNode*> DA);
+  };
+
+  struct UseNode : public RefNode {
+    void linkToDef(NodeId Self, NodeAddr<DefNode*> DA);
+  };
+
+  struct PhiUseNode : public UseNode {
+    NodeId getPredecessor() const {
+      assert(getFlags() & NodeAttrs::PhiRef);
+      return Ref.PhiU.PredB;
+    }
+    void setPredecessor(NodeId B) {
+      assert(getFlags() & NodeAttrs::PhiRef);
+      Ref.PhiU.PredB = B;
+    }
+  };
+
+  struct CodeNode : public NodeBase {
+    template <typename T> T getCode() const {
+      return static_cast<T>(Code.CP);
+    }
+    void setCode(void *C) {
+      Code.CP = C;
+    }
+
+    NodeAddr<NodeBase*> getFirstMember(const DataFlowGraph &G) const;
+    NodeAddr<NodeBase*> getLastMember(const DataFlowGraph &G) const;
+    void addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G);
+    void addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA,
+        const DataFlowGraph &G);
+    void removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G);
+
+    NodeList members(const DataFlowGraph &G) const;
+    template <typename Predicate>
+    NodeList members_if(Predicate P, const DataFlowGraph &G) const;
+  };
+
+  struct InstrNode : public CodeNode {
+    NodeAddr<NodeBase*> getOwner(const DataFlowGraph &G);
+  };
+
+  struct PhiNode : public InstrNode {
+    MachineInstr *getCode() const {
+      return nullptr;
+    }
+  };
+
+  struct StmtNode : public InstrNode {
+    MachineInstr *getCode() const {
+      return CodeNode::getCode<MachineInstr*>();
+    }
+  };
+
+  struct BlockNode : public CodeNode {
+    MachineBasicBlock *getCode() const {
+      return CodeNode::getCode<MachineBasicBlock*>();
+    }
+
+    void addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G);
+  };
+
+  struct FuncNode : public CodeNode {
+    MachineFunction *getCode() const {
+      return CodeNode::getCode<MachineFunction*>();
+    }
+
+    NodeAddr<BlockNode*> findBlock(const MachineBasicBlock *BB,
+        const DataFlowGraph &G) const;
+    NodeAddr<BlockNode*> getEntryBlock(const DataFlowGraph &G);
+  };
+
+  struct DataFlowGraph {
+    DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
+        const TargetRegisterInfo &tri, const MachineDominatorTree &mdt,
+        const MachineDominanceFrontier &mdf, const TargetOperandInfo &toi);
+
+    NodeBase *ptr(NodeId N) const;
+    template <typename T> T ptr(NodeId N) const {
+      return static_cast<T>(ptr(N));
+    }
+
+    NodeId id(const NodeBase *P) const;
+
+    template <typename T> NodeAddr<T> addr(NodeId N) const {
+      return { ptr<T>(N), N };
+    }
+
+    NodeAddr<FuncNode*> getFunc() const { return Func; }
+    MachineFunction &getMF() const { return MF; }
+    const TargetInstrInfo &getTII() const { return TII; }
+    const TargetRegisterInfo &getTRI() const { return TRI; }
+    const PhysicalRegisterInfo &getPRI() const { return PRI; }
+    const MachineDominatorTree &getDT() const { return MDT; }
+    const MachineDominanceFrontier &getDF() const { return MDF; }
+    const RegisterAggr &getLiveIns() const { return LiveIns; }
+
+    struct DefStack {
+      DefStack() = default;
+
+      bool empty() const { return Stack.empty() || top() == bottom(); }
+
+    private:
+      using value_type = NodeAddr<DefNode *>;
+      struct Iterator {
+        using value_type = DefStack::value_type;
+
+        Iterator &up() { Pos = DS.nextUp(Pos); return *this; }
+        Iterator &down() { Pos = DS.nextDown(Pos); return *this; }
+
+        value_type operator*() const {
+          assert(Pos >= 1);
+          return DS.Stack[Pos-1];
+        }
+        const value_type *operator->() const {
+          assert(Pos >= 1);
+          return &DS.Stack[Pos-1];
+        }
+        bool operator==(const Iterator &It) const { return Pos == It.Pos; }
+        bool operator!=(const Iterator &It) const { return Pos != It.Pos; }
+
+      private:
+        friend struct DefStack;
+
+        Iterator(const DefStack &S, bool Top);
+
+        // Pos-1 is the index in the StorageType object that corresponds to
+        // the top of the DefStack.
+        const DefStack &DS;
+        unsigned Pos;
+      };
+
+    public:
+      using iterator = Iterator;
+
+      iterator top() const { return Iterator(*this, true); }
+      iterator bottom() const { return Iterator(*this, false); }
+      unsigned size() const;
+
+      void push(NodeAddr<DefNode*> DA) { Stack.push_back(DA); }
+      void pop();
+      void start_block(NodeId N);
+      void clear_block(NodeId N);
+
+    private:
+      friend struct Iterator;
+
+      using StorageType = std::vector<value_type>;
+
+      bool isDelimiter(const StorageType::value_type &P, NodeId N = 0) const {
+        return (P.Addr == nullptr) && (N == 0 || P.Id == N);
+      }
+
+      unsigned nextUp(unsigned P) const;
+      unsigned nextDown(unsigned P) const;
+
+      StorageType Stack;
+    };
+
+    // Make this std::unordered_map for speed of accessing elements.
+    // Map: Register (physical or virtual) -> DefStack
+    using DefStackMap = std::unordered_map<RegisterId, DefStack>;
+
+    void build(unsigned Options = BuildOptions::None);
+    void pushAllDefs(NodeAddr<InstrNode*> IA, DefStackMap &DM);
+    void markBlock(NodeId B, DefStackMap &DefM);
+    void releaseBlock(NodeId B, DefStackMap &DefM);
+
+    PackedRegisterRef pack(RegisterRef RR) {
+      return { RR.Reg, LMI.getIndexForLaneMask(RR.Mask) };
+    }
+    PackedRegisterRef pack(RegisterRef RR) const {
+      return { RR.Reg, LMI.getIndexForLaneMask(RR.Mask) };
+    }
+    RegisterRef unpack(PackedRegisterRef PR) const {
+      return RegisterRef(PR.Reg, LMI.getLaneMaskForIndex(PR.MaskId));
+    }
+
+    RegisterRef makeRegRef(unsigned Reg, unsigned Sub) const;
+    RegisterRef makeRegRef(const MachineOperand &Op) const;
+    RegisterRef restrictRef(RegisterRef AR, RegisterRef BR) const;
+
+    NodeAddr<RefNode*> getNextRelated(NodeAddr<InstrNode*> IA,
+        NodeAddr<RefNode*> RA) const;
+    NodeAddr<RefNode*> getNextImp(NodeAddr<InstrNode*> IA,
+        NodeAddr<RefNode*> RA, bool Create);
+    NodeAddr<RefNode*> getNextImp(NodeAddr<InstrNode*> IA,
+        NodeAddr<RefNode*> RA) const;
+    NodeAddr<RefNode*> getNextShadow(NodeAddr<InstrNode*> IA,
+        NodeAddr<RefNode*> RA, bool Create);
+    NodeAddr<RefNode*> getNextShadow(NodeAddr<InstrNode*> IA,
+        NodeAddr<RefNode*> RA) const;
+
+    NodeList getRelatedRefs(NodeAddr<InstrNode*> IA,
+        NodeAddr<RefNode*> RA) const;
+
+    NodeAddr<BlockNode*> findBlock(MachineBasicBlock *BB) const {
+      return BlockNodes.at(BB);
+    }
+
+    void unlinkUse(NodeAddr<UseNode*> UA, bool RemoveFromOwner) {
+      unlinkUseDF(UA);
+      if (RemoveFromOwner)
+        removeFromOwner(UA);
+    }
+
+    void unlinkDef(NodeAddr<DefNode*> DA, bool RemoveFromOwner) {
+      unlinkDefDF(DA);
+      if (RemoveFromOwner)
+        removeFromOwner(DA);
+    }
+
+    // Some useful filters.
+    template <uint16_t Kind>
+    static bool IsRef(const NodeAddr<NodeBase*> BA) {
+      return BA.Addr->getType() == NodeAttrs::Ref &&
+             BA.Addr->getKind() == Kind;
+    }
+
+    template <uint16_t Kind>
+    static bool IsCode(const NodeAddr<NodeBase*> BA) {
+      return BA.Addr->getType() == NodeAttrs::Code &&
+             BA.Addr->getKind() == Kind;
+    }
+
+    static bool IsDef(const NodeAddr<NodeBase*> BA) {
+      return BA.Addr->getType() == NodeAttrs::Ref &&
+             BA.Addr->getKind() == NodeAttrs::Def;
+    }
+
+    static bool IsUse(const NodeAddr<NodeBase*> BA) {
+      return BA.Addr->getType() == NodeAttrs::Ref &&
+             BA.Addr->getKind() == NodeAttrs::Use;
+    }
+
+    static bool IsPhi(const NodeAddr<NodeBase*> BA) {
+      return BA.Addr->getType() == NodeAttrs::Code &&
+             BA.Addr->getKind() == NodeAttrs::Phi;
+    }
+
+    static bool IsPreservingDef(const NodeAddr<DefNode*> DA) {
+      uint16_t Flags = DA.Addr->getFlags();
+      return (Flags & NodeAttrs::Preserving) && !(Flags & NodeAttrs::Undef);
+    }
+
+  private:
+    void reset();
+
+    RegisterSet getLandingPadLiveIns() const;
+
+    NodeAddr<NodeBase*> newNode(uint16_t Attrs);
+    NodeAddr<NodeBase*> cloneNode(const NodeAddr<NodeBase*> B);
+    NodeAddr<UseNode*> newUse(NodeAddr<InstrNode*> Owner,
+        MachineOperand &Op, uint16_t Flags = NodeAttrs::None);
+    NodeAddr<PhiUseNode*> newPhiUse(NodeAddr<PhiNode*> Owner,
+        RegisterRef RR, NodeAddr<BlockNode*> PredB,
+        uint16_t Flags = NodeAttrs::PhiRef);
+    NodeAddr<DefNode*> newDef(NodeAddr<InstrNode*> Owner,
+        MachineOperand &Op, uint16_t Flags = NodeAttrs::None);
+    NodeAddr<DefNode*> newDef(NodeAddr<InstrNode*> Owner,
+        RegisterRef RR, uint16_t Flags = NodeAttrs::PhiRef);
+    NodeAddr<PhiNode*> newPhi(NodeAddr<BlockNode*> Owner);
+    NodeAddr<StmtNode*> newStmt(NodeAddr<BlockNode*> Owner,
+        MachineInstr *MI);
+    NodeAddr<BlockNode*> newBlock(NodeAddr<FuncNode*> Owner,
+        MachineBasicBlock *BB);
+    NodeAddr<FuncNode*> newFunc(MachineFunction *MF);
+
+    template <typename Predicate>
+    std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>>
+    locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA,
+        Predicate P) const;
+
+    using BlockRefsMap = std::map<NodeId, RegisterSet>;
+
+    void buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In);
+    void recordDefsForDF(BlockRefsMap &PhiM, NodeAddr<BlockNode*> BA);
+    void buildPhis(BlockRefsMap &PhiM, RegisterSet &AllRefs,
+        NodeAddr<BlockNode*> BA);
+    void removeUnusedPhis();
+
+    void pushClobbers(NodeAddr<InstrNode*> IA, DefStackMap &DM);
+    void pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DM);
+    template <typename T> void linkRefUp(NodeAddr<InstrNode*> IA,
+        NodeAddr<T> TA, DefStack &DS);
+    template <typename Predicate> void linkStmtRefs(DefStackMap &DefM,
+        NodeAddr<StmtNode*> SA, Predicate P);
+    void linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA);
+
+    void unlinkUseDF(NodeAddr<UseNode*> UA);
+    void unlinkDefDF(NodeAddr<DefNode*> DA);
+
+    void removeFromOwner(NodeAddr<RefNode*> RA) {
+      NodeAddr<InstrNode*> IA = RA.Addr->getOwner(*this);
+      IA.Addr->removeMember(RA, *this);
+    }
+
+    MachineFunction &MF;
+    const TargetInstrInfo &TII;
+    const TargetRegisterInfo &TRI;
+    const PhysicalRegisterInfo PRI;
+    const MachineDominatorTree &MDT;
+    const MachineDominanceFrontier &MDF;
+    const TargetOperandInfo &TOI;
+
+    RegisterAggr LiveIns;
+    NodeAddr<FuncNode*> Func;
+    NodeAllocator Memory;

*** DIFF OUTPUT TRUNCATED AT 1000 LINES ***


More information about the svn-src-all mailing list