kern/124164: [patch] Add SHA-256/512 hash algorithm to crypt(3)

Yasuhiro KIMURA yasu at utahime.org
Sun Nov 14 23:20:09 UTC 2010


The following reply was made to PR kern/124164; it has been noted by GNATS.

From: Yasuhiro KIMURA <yasu at utahime.org>
To: dmagda+fbugs at ee.ryerson.ca
Cc: bug-followup at FreeBSD.org
Subject: Re: kern/124164: [patch] Add SHA-256/512 hash algorithm to crypt(3)
Date: Mon, 15 Nov 2010 08:01:41 +0900 (JST)

 ----Next_Part(Mon_Nov_15_08_01_41_2010_891)--
 Content-Type: Text/Plain; charset=us-ascii
 Content-Transfer-Encoding: 7bit
 
 Still useful at least on 8.x. Attached patch is modified on for 8.1R.
 
 ----Next_Part(Mon_Nov_15_08_01_41_2010_891)--
 Content-Type: Text/Plain; charset=us-ascii
 Content-Transfer-Encoding: 7bit
 Content-Disposition: inline; filename="patch-libcrypt-8.1R"
 
 Index: Makefile
 ===================================================================
 RCS file: /usr0/freebsd/cvsroot/src/lib/libcrypt/Makefile,v
 retrieving revision 1.40.2.1.4.1
 diff -u -r1.40.2.1.4.1 Makefile
 --- Makefile	14 Jun 2010 02:09:06 -0000	1.40.2.1.4.1
 +++ Makefile	20 Jul 2010 04:11:44 -0000
 @@ -12,7 +12,8 @@
  .PATH:		${.CURDIR}/../libmd
  SRCS=		crypt.c misc.c \
  		crypt-md5.c md5c.c \
 -		crypt-nthash.c md4c.c
 +		crypt-nthash.c md4c.c \
 +		crypt-sha256.c crypt-sha512.c
  MAN=		crypt.3
  MLINKS=		crypt.3 crypt_get_format.3 crypt.3 crypt_set_format.3
  CFLAGS+=	-I${.CURDIR}/../libmd -I${.CURDIR}/../libutil
 Index: crypt-sha256.c
 ===================================================================
 RCS file: crypt-sha256.c
 diff -N crypt-sha256.c
 --- /dev/null	1 Jan 1970 00:00:00 -0000
 +++ crypt-sha256.c	20 Jul 2010 04:14:11 -0000
 @@ -0,0 +1,733 @@
 +/* SHA256-based Unix crypt implementation.
 +   Released into the Public Domain by Ulrich Drepper <drepper at redhat.com>.  */
 +
 +#include <errno.h>
 +#include <limits.h>
 +#include <stdint.h>
 +#include <stdbool.h>
 +#include <stdio.h>
 +#include <stdlib.h>
 +#include <string.h>
 +#include <sys/param.h>
 +#include <sys/types.h>
 +
 +/* sys/param.h must be included before checking OS and C Library */
 +#if defined(__GNU_LIBRARY__)
 +/* OS with GNU C Library (Linux or Hurd(?)) */
 +#include <endian.h>
 +#elif (defined(BSD) && (BSD >= 199306))
 +/* 4.4BSD code base or newer */
 +#include <sys/endian.h>
 +#else
 +/* Other OS (such as Solaris or AIX?) */
 +#error I don't know what to do.
 +#endif
 +
 +/* Structure to save state of computation between the single steps.  */
 +struct sha256_ctx
 +{
 +  uint32_t H[8];
 +
 +  uint32_t total[2];
 +  uint32_t buflen;
 +  char buffer[128];	/* NB: always correctly aligned for uint32_t.  */
 +};
 +
 +
 +#if __BYTE_ORDER == __LITTLE_ENDIAN
 +# define SWAP(n) \
 +    (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
 +#else
 +# define SWAP(n) (n)
 +#endif
 +
 +
 +/* This array contains the bytes used to pad the buffer to the next
 +   64-byte boundary.  (FIPS 180-2:5.1.1)  */
 +static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ...  */ };
 +
 +
 +/* Constants for SHA256 from FIPS 180-2:4.2.2.  */
 +static const uint32_t K[64] =
 +  {
 +    0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
 +    0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
 +    0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
 +    0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
 +    0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
 +    0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
 +    0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
 +    0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
 +    0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
 +    0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
 +    0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
 +    0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
 +    0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
 +    0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
 +    0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
 +    0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
 +  };
 +
 +/* Process LEN bytes of BUFFER, accumulating context into CTX.
 +   It is assumed that LEN % 64 == 0.  */
 +static void
 +sha256_process_block (const void *buffer, size_t len, struct sha256_ctx *ctx)
 +{
 +  const uint32_t *words = buffer;
 +  size_t nwords = len / sizeof (uint32_t);
 +  uint32_t a = ctx->H[0];
 +  uint32_t b = ctx->H[1];
 +  uint32_t c = ctx->H[2];
 +  uint32_t d = ctx->H[3];
 +  uint32_t e = ctx->H[4];
 +  uint32_t f = ctx->H[5];
 +  uint32_t g = ctx->H[6];
 +  uint32_t h = ctx->H[7];
 +
 +  /* First increment the byte count.  FIPS 180-2 specifies the possible
 +     length of the file up to 2^64 bits.  Here we only compute the
 +     number of bytes.  Do a double word increment.  */
 +  ctx->total[0] += len;
 +  if (ctx->total[0] < len)
 +    ++ctx->total[1];
 +
 +  /* Process all bytes in the buffer with 64 bytes in each round of
 +     the loop.  */
 +  while (nwords > 0)
 +    {
 +      uint32_t W[64];
 +      uint32_t a_save = a;
 +      uint32_t b_save = b;
 +      uint32_t c_save = c;
 +      uint32_t d_save = d;
 +      uint32_t e_save = e;
 +      uint32_t f_save = f;
 +      uint32_t g_save = g;
 +      uint32_t h_save = h;
 +      unsigned int t;
 +
 +      /* Operators defined in FIPS 180-2:4.1.2.  */
 +#define Ch(x, y, z) ((x & y) ^ (~x & z))
 +#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
 +#define S0(x) (CYCLIC (x, 2) ^ CYCLIC (x, 13) ^ CYCLIC (x, 22))
 +#define S1(x) (CYCLIC (x, 6) ^ CYCLIC (x, 11) ^ CYCLIC (x, 25))
 +#define R0(x) (CYCLIC (x, 7) ^ CYCLIC (x, 18) ^ (x >> 3))
 +#define R1(x) (CYCLIC (x, 17) ^ CYCLIC (x, 19) ^ (x >> 10))
 +
 +      /* It is unfortunate that C does not provide an operator for
 +	 cyclic rotation.  Hope the C compiler is smart enough.  */
 +#define CYCLIC(w, s) ((w >> s) | (w << (32 - s)))
 +
 +      /* Compute the message schedule according to FIPS 180-2:6.2.2 step 2.  */
 +      for (t = 0; t < 16; ++t)
 +	{
 +	  W[t] = SWAP (*words);
 +	  ++words;
 +	}
 +      for (t = 16; t < 64; ++t)
 +	W[t] = R1 (W[t - 2]) + W[t - 7] + R0 (W[t - 15]) + W[t - 16];
 +
 +      /* The actual computation according to FIPS 180-2:6.2.2 step 3.  */
 +      for (t = 0; t < 64; ++t)
 +	{
 +	  uint32_t T1 = h + S1 (e) + Ch (e, f, g) + K[t] + W[t];
 +	  uint32_t T2 = S0 (a) + Maj (a, b, c);
 +	  h = g;
 +	  g = f;
 +	  f = e;
 +	  e = d + T1;
 +	  d = c;
 +	  c = b;
 +	  b = a;
 +	  a = T1 + T2;
 +	}
 +
 +      /* Add the starting values of the context according to FIPS 180-2:6.2.2
 +	 step 4.  */
 +      a += a_save;
 +      b += b_save;
 +      c += c_save;
 +      d += d_save;
 +      e += e_save;
 +      f += f_save;
 +      g += g_save;
 +      h += h_save;
 +
 +      /* Prepare for the next round.  */
 +      nwords -= 16;
 +    }
 +
 +  /* Put checksum in context given as argument.  */
 +  ctx->H[0] = a;
 +  ctx->H[1] = b;
 +  ctx->H[2] = c;
 +  ctx->H[3] = d;
 +  ctx->H[4] = e;
 +  ctx->H[5] = f;
 +  ctx->H[6] = g;
 +  ctx->H[7] = h;
 +}
 +
 +
 +/* Initialize structure containing state of computation.
 +   (FIPS 180-2:5.3.2)  */
 +static void
 +sha256_init_ctx (struct sha256_ctx *ctx)
 +{
 +  ctx->H[0] = 0x6a09e667;
 +  ctx->H[1] = 0xbb67ae85;
 +  ctx->H[2] = 0x3c6ef372;
 +  ctx->H[3] = 0xa54ff53a;
 +  ctx->H[4] = 0x510e527f;
 +  ctx->H[5] = 0x9b05688c;
 +  ctx->H[6] = 0x1f83d9ab;
 +  ctx->H[7] = 0x5be0cd19;
 +
 +  ctx->total[0] = ctx->total[1] = 0;
 +  ctx->buflen = 0;
 +}
 +
 +
 +/* Process the remaining bytes in the internal buffer and the usual
 +   prolog according to the standard and write the result to RESBUF.
 +
 +   IMPORTANT: On some systems it is required that RESBUF is correctly
 +   aligned for a 32 bits value.  */
 +static void *
 +sha256_finish_ctx (struct sha256_ctx *ctx, void *resbuf)
 +{
 +  /* Take yet unprocessed bytes into account.  */
 +  uint32_t bytes = ctx->buflen;
 +  size_t pad;
 +
 +  /* Now count remaining bytes.  */
 +  ctx->total[0] += bytes;
 +  if (ctx->total[0] < bytes)
 +    ++ctx->total[1];
 +
 +  pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;
 +  memcpy (&ctx->buffer[bytes], fillbuf, pad);
 +
 +  /* Put the 64-bit file length in *bits* at the end of the buffer.  */
 +  *(uint32_t *) &ctx->buffer[bytes + pad + 4] = SWAP (ctx->total[0] << 3);
 +  *(uint32_t *) &ctx->buffer[bytes + pad] = SWAP ((ctx->total[1] << 3) |
 +						  (ctx->total[0] >> 29));
 +
 +  /* Process last bytes.  */
 +  sha256_process_block (ctx->buffer, bytes + pad + 8, ctx);
 +
 +  /* Put result from CTX in first 32 bytes following RESBUF.  */
 +  unsigned int i;
 +  for (i = 0; i < 8; ++i)
 +    ((uint32_t *) resbuf)[i] = SWAP (ctx->H[i]);
 +
 +  return resbuf;
 +}
 +
 +
 +static void
 +sha256_process_bytes (const void *buffer, size_t len, struct sha256_ctx *ctx)
 +{
 +  /* When we already have some bits in our internal buffer concatenate
 +     both inputs first.  */
 +  if (ctx->buflen != 0)
 +    {
 +      size_t left_over = ctx->buflen;
 +      size_t add = 128 - left_over > len ? len : 128 - left_over;
 +
 +      memcpy (&ctx->buffer[left_over], buffer, add);
 +      ctx->buflen += add;
 +
 +      if (ctx->buflen > 64)
 +	{
 +	  sha256_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
 +
 +	  ctx->buflen &= 63;
 +	  /* The regions in the following copy operation cannot overlap.  */
 +	  memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~63],
 +		  ctx->buflen);
 +	}
 +
 +      buffer = (const char *) buffer + add;
 +      len -= add;
 +    }
 +
 +  /* Process available complete blocks.  */
 +  if (len >= 64)
 +    {
 +/* To check alignment gcc has an appropriate operator.  Other
 +   compilers don't.  */
 +#if __GNUC__ >= 2
 +# define UNALIGNED_P(p) (((uintptr_t) p) % __alignof__ (uint32_t) != 0)
 +#else
 +# define UNALIGNED_P(p) (((uintptr_t) p) % sizeof (uint32_t) != 0)
 +#endif
 +      if (UNALIGNED_P (buffer))
 +	while (len > 64)
 +	  {
 +	    sha256_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
 +	    buffer = (const char *) buffer + 64;
 +	    len -= 64;
 +	  }
 +      else
 +	{
 +	  sha256_process_block (buffer, len & ~63, ctx);
 +	  buffer = (const char *) buffer + (len & ~63);
 +	  len &= 63;
 +	}
 +    }
 +
 +  /* Move remaining bytes into internal buffer.  */
 +  if (len > 0)
 +    {
 +      size_t left_over = ctx->buflen;
 +
 +      memcpy (&ctx->buffer[left_over], buffer, len);
 +      left_over += len;
 +      if (left_over >= 64)
 +	{
 +	  sha256_process_block (ctx->buffer, 64, ctx);
 +	  left_over -= 64;
 +	  memcpy (ctx->buffer, &ctx->buffer[64], left_over);
 +	}
 +      ctx->buflen = left_over;
 +    }
 +}
 +
 +
 +/* Define our magic string to mark salt for SHA256 "encryption"
 +   replacement.  */
 +static const char sha256_salt_prefix[] = "$5$";
 +
 +/* Prefix for optional rounds specification.  */
 +static const char sha256_rounds_prefix[] = "rounds=";
 +
 +/* Maximum salt string length.  */
 +#define SALT_LEN_MAX 16
 +/* Default number of rounds if not explicitly specified.  */
 +#define ROUNDS_DEFAULT 5000
 +/* Minimum number of rounds.  */
 +#define ROUNDS_MIN 1000
 +/* Maximum number of rounds.  */
 +#define ROUNDS_MAX 999999999
 +
 +/* Table with characters for base64 transformation.  */
 +static const char b64t[64] =
 +"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
 +
 +
 +static char *
 +sha256_crypt_r (const char *key, const char *salt, char *buffer, int buflen)
 +{
 +  unsigned char alt_result[32]
 +    __attribute__ ((__aligned__ (__alignof__ (uint32_t))));
 +  unsigned char temp_result[32]
 +    __attribute__ ((__aligned__ (__alignof__ (uint32_t))));
 +  struct sha256_ctx ctx;
 +  struct sha256_ctx alt_ctx;
 +  size_t salt_len;
 +  size_t key_len;
 +  size_t cnt;
 +  char *cp;
 +  char *copied_key = NULL;
 +  char *copied_salt = NULL;
 +  char *p_bytes;
 +  char *s_bytes;
 +  /* Default number of rounds.  */
 +  size_t rounds = ROUNDS_DEFAULT;
 +  bool rounds_custom = false;
 +
 +  /* Find beginning of salt string.  The prefix should normally always
 +     be present.  Just in case it is not.  */
 +  if (strncmp (sha256_salt_prefix, salt, sizeof (sha256_salt_prefix) - 1) == 0)
 +    /* Skip salt prefix.  */
 +    salt += sizeof (sha256_salt_prefix) - 1;
 +
 +  if (strncmp (salt, sha256_rounds_prefix, sizeof (sha256_rounds_prefix) - 1)
 +      == 0)
 +    {
 +      const char *num = salt + sizeof (sha256_rounds_prefix) - 1;
 +      char *endp;
 +      unsigned long int srounds = strtoul (num, &endp, 10);
 +      if (*endp == '$')
 +	{
 +	  salt = endp + 1;
 +	  rounds = MAX (ROUNDS_MIN, MIN (srounds, ROUNDS_MAX));
 +	  rounds_custom = true;
 +	}
 +    }
 +
 +  salt_len = MIN (strcspn (salt, "$"), SALT_LEN_MAX);
 +  key_len = strlen (key);
 +
 +  if ((key - (char *) 0) % __alignof__ (uint32_t) != 0)
 +    {
 +      char *tmp = (char *) alloca (key_len + __alignof__ (uint32_t));
 +      key = copied_key =
 +	memcpy (tmp + __alignof__ (uint32_t)
 +		- (tmp - (char *) 0) % __alignof__ (uint32_t),
 +		key, key_len);
 +    }
 +
 +  if ((salt - (char *) 0) % __alignof__ (uint32_t) != 0)
 +    {
 +      char *tmp = (char *) alloca (salt_len + __alignof__ (uint32_t));
 +      salt = copied_salt =
 +	memcpy (tmp + __alignof__ (uint32_t)
 +		- (tmp - (char *) 0) % __alignof__ (uint32_t),
 +		salt, salt_len);
 +    }
 +
 +  /* Prepare for the real work.  */
 +  sha256_init_ctx (&ctx);
 +
 +  /* Add the key string.  */
 +  sha256_process_bytes (key, key_len, &ctx);
 +
 +  /* The last part is the salt string.  This must be at most 8
 +     characters and it ends at the first `$' character (for
 +     compatibility with existing implementations).  */
 +  sha256_process_bytes (salt, salt_len, &ctx);
 +
 +
 +  /* Compute alternate SHA256 sum with input KEY, SALT, and KEY.  The
 +     final result will be added to the first context.  */
 +  sha256_init_ctx (&alt_ctx);
 +
 +  /* Add key.  */
 +  sha256_process_bytes (key, key_len, &alt_ctx);
 +
 +  /* Add salt.  */
 +  sha256_process_bytes (salt, salt_len, &alt_ctx);
 +
 +  /* Add key again.  */
 +  sha256_process_bytes (key, key_len, &alt_ctx);
 +
 +  /* Now get result of this (32 bytes) and add it to the other
 +     context.  */
 +  sha256_finish_ctx (&alt_ctx, alt_result);
 +
 +  /* Add for any character in the key one byte of the alternate sum.  */
 +  for (cnt = key_len; cnt > 32; cnt -= 32)
 +    sha256_process_bytes (alt_result, 32, &ctx);
 +  sha256_process_bytes (alt_result, cnt, &ctx);
 +
 +  /* Take the binary representation of the length of the key and for every
 +     1 add the alternate sum, for every 0 the key.  */
 +  for (cnt = key_len; cnt > 0; cnt >>= 1)
 +    if ((cnt & 1) != 0)
 +      sha256_process_bytes (alt_result, 32, &ctx);
 +    else
 +      sha256_process_bytes (key, key_len, &ctx);
 +
 +  /* Create intermediate result.  */
 +  sha256_finish_ctx (&ctx, alt_result);
 +
 +  /* Start computation of P byte sequence.  */
 +  sha256_init_ctx (&alt_ctx);
 +
 +  /* For every character in the password add the entire password.  */
 +  for (cnt = 0; cnt < key_len; ++cnt)
 +    sha256_process_bytes (key, key_len, &alt_ctx);
 +
 +  /* Finish the digest.  */
 +  sha256_finish_ctx (&alt_ctx, temp_result);
 +
 +  /* Create byte sequence P.  */
 +  cp = p_bytes = alloca (key_len);
 +  for (cnt = key_len; cnt >= 32; cnt -= 32) {
 +    memcpy (cp, temp_result, 32);
 +    cp += 32;
 +  }
 +  memcpy (cp, temp_result, cnt);
 +
 +  /* Start computation of S byte sequence.  */
 +  sha256_init_ctx (&alt_ctx);
 +
 +  /* For every character in the password add the entire password.  */
 +  for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt)
 +    sha256_process_bytes (salt, salt_len, &alt_ctx);
 +
 +  /* Finish the digest.  */
 +  sha256_finish_ctx (&alt_ctx, temp_result);
 +
 +  /* Create byte sequence S.  */
 +  cp = s_bytes = alloca (salt_len);
 +  for (cnt = salt_len; cnt >= 32; cnt -= 32) {
 +    memcpy (cp, temp_result, 32);
 +    cp += 32;
 +  }
 +  memcpy (cp, temp_result, cnt);
 +
 +  /* Repeatedly run the collected hash value through SHA256 to burn
 +     CPU cycles.  */
 +  for (cnt = 0; cnt < rounds; ++cnt)
 +    {
 +      /* New context.  */
 +      sha256_init_ctx (&ctx);
 +
 +      /* Add key or last result.  */
 +      if ((cnt & 1) != 0)
 +	sha256_process_bytes (p_bytes, key_len, &ctx);
 +      else
 +	sha256_process_bytes (alt_result, 32, &ctx);
 +
 +      /* Add salt for numbers not divisible by 3.  */
 +      if (cnt % 3 != 0)
 +	sha256_process_bytes (s_bytes, salt_len, &ctx);
 +
 +      /* Add key for numbers not divisible by 7.  */
 +      if (cnt % 7 != 0)
 +	sha256_process_bytes (p_bytes, key_len, &ctx);
 +
 +      /* Add key or last result.  */
 +      if ((cnt & 1) != 0)
 +	sha256_process_bytes (alt_result, 32, &ctx);
 +      else
 +	sha256_process_bytes (p_bytes, key_len, &ctx);
 +
 +      /* Create intermediate result.  */
 +      sha256_finish_ctx (&ctx, alt_result);
 +    }
 +
 +  /* Now we can construct the result string.  It consists of three
 +     parts.  */
 +  cp = stpncpy (buffer, sha256_salt_prefix, MAX (0, buflen));
 +  buflen -= sizeof (sha256_salt_prefix) - 1;
 +
 +  if (rounds_custom)
 +    {
 +      int n = snprintf (cp, MAX (0, buflen), "%s%zu$",
 +			sha256_rounds_prefix, rounds);
 +      cp += n;
 +      buflen -= n;
 +    }
 +
 +  cp = stpncpy (cp, salt, MIN ((size_t) MAX (0, buflen), salt_len));
 +  buflen -= MIN ((size_t) MAX (0, buflen), salt_len);
 +
 +  if (buflen > 0)
 +    {
 +      *cp++ = '$';
 +      --buflen;
 +    }
 +
 +#define b64_from_24bit(B2, B1, B0, N)					      \
 +  do {									      \
 +    unsigned int w = ((B2) << 16) | ((B1) << 8) | (B0);			      \
 +    int n = (N);							      \
 +    while (n-- > 0 && buflen > 0)					      \
 +      {									      \
 +	*cp++ = b64t[w & 0x3f];						      \
 +	--buflen;							      \
 +	w >>= 6;							      \
 +      }									      \
 +  } while (0)
 +
 +  b64_from_24bit (alt_result[0], alt_result[10], alt_result[20], 4);
 +  b64_from_24bit (alt_result[21], alt_result[1], alt_result[11], 4);
 +  b64_from_24bit (alt_result[12], alt_result[22], alt_result[2], 4);
 +  b64_from_24bit (alt_result[3], alt_result[13], alt_result[23], 4);
 +  b64_from_24bit (alt_result[24], alt_result[4], alt_result[14], 4);
 +  b64_from_24bit (alt_result[15], alt_result[25], alt_result[5], 4);
 +  b64_from_24bit (alt_result[6], alt_result[16], alt_result[26], 4);
 +  b64_from_24bit (alt_result[27], alt_result[7], alt_result[17], 4);
 +  b64_from_24bit (alt_result[18], alt_result[28], alt_result[8], 4);
 +  b64_from_24bit (alt_result[9], alt_result[19], alt_result[29], 4);
 +  b64_from_24bit (0, alt_result[31], alt_result[30], 3);
 +  if (buflen <= 0)
 +    {
 +      errno = ERANGE;
 +      buffer = NULL;
 +    }
 +  else
 +    *cp = '\0';		/* Terminate the string.  */
 +
 +  /* Clear the buffer for the intermediate result so that people
 +     attaching to processes or reading core dumps cannot get any
 +     information.  We do it in this way to clear correct_words[]
 +     inside the SHA256 implementation as well.  */
 +  sha256_init_ctx (&ctx);
 +  sha256_finish_ctx (&ctx, alt_result);
 +  memset (temp_result, '\0', sizeof (temp_result));
 +  memset (p_bytes, '\0', key_len);
 +  memset (s_bytes, '\0', salt_len);
 +  memset (&ctx, '\0', sizeof (ctx));
 +  memset (&alt_ctx, '\0', sizeof (alt_ctx));
 +  if (copied_key != NULL)
 +    memset (copied_key, '\0', key_len);
 +  if (copied_salt != NULL)
 +    memset (copied_salt, '\0', salt_len);
 +
 +  return buffer;
 +}
 +
 +
 +/* This entry point is equivalent to the `crypt' function in Unix
 +   libcs.  */
 +char *
 +sha256_crypt (const char *key, const char *salt)
 +{
 +  /* We don't want to have an arbitrary limit in the size of the
 +     password.  We can compute an upper bound for the size of the
 +     result in advance and so we can prepare the buffer we pass to
 +     `sha256_crypt_r'.  */
 +  static char *buffer;
 +  static int buflen;
 +  int needed = (sizeof (sha256_salt_prefix) - 1
 +		+ sizeof (sha256_rounds_prefix) + 9 + 1
 +		+ strlen (salt) + 1 + 43 + 1);
 +
 +  if (buflen < needed)
 +    {
 +      char *new_buffer = (char *) realloc (buffer, needed);
 +      if (new_buffer == NULL)
 +	return NULL;
 +
 +      buffer = new_buffer;
 +      buflen = needed;
 +    }
 +
 +  return sha256_crypt_r (key, salt, buffer, buflen);
 +}
 +
 +
 +#ifdef TEST
 +static const struct
 +{
 +  const char *input;
 +  const char result[32];
 +} tests[] =
 +  {
 +    /* Test vectors from FIPS 180-2: appendix B.1.  */
 +    { "abc",
 +      "\xba\x78\x16\xbf\x8f\x01\xcf\xea\x41\x41\x40\xde\x5d\xae\x22\x23"
 +      "\xb0\x03\x61\xa3\x96\x17\x7a\x9c\xb4\x10\xff\x61\xf2\x00\x15\xad" },
 +    /* Test vectors from FIPS 180-2: appendix B.2.  */
 +    { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
 +      "\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39"
 +      "\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1" },
 +    /* Test vectors from the NESSIE project.  */
 +    { "",
 +      "\xe3\xb0\xc4\x42\x98\xfc\x1c\x14\x9a\xfb\xf4\xc8\x99\x6f\xb9\x24"
 +      "\x27\xae\x41\xe4\x64\x9b\x93\x4c\xa4\x95\x99\x1b\x78\x52\xb8\x55" },
 +    { "a",
 +      "\xca\x97\x81\x12\xca\x1b\xbd\xca\xfa\xc2\x31\xb3\x9a\x23\xdc\x4d"
 +      "\xa7\x86\xef\xf8\x14\x7c\x4e\x72\xb9\x80\x77\x85\xaf\xee\x48\xbb" },
 +    { "message digest",
 +      "\xf7\x84\x6f\x55\xcf\x23\xe1\x4e\xeb\xea\xb5\xb4\xe1\x55\x0c\xad"
 +      "\x5b\x50\x9e\x33\x48\xfb\xc4\xef\xa3\xa1\x41\x3d\x39\x3c\xb6\x50" },
 +    { "abcdefghijklmnopqrstuvwxyz",
 +      "\x71\xc4\x80\xdf\x93\xd6\xae\x2f\x1e\xfa\xd1\x44\x7c\x66\xc9\x52"
 +      "\x5e\x31\x62\x18\xcf\x51\xfc\x8d\x9e\xd8\x32\xf2\xda\xf1\x8b\x73" },
 +    { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
 +      "\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39"
 +      "\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1" },
 +    { "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
 +      "\xdb\x4b\xfc\xbd\x4d\xa0\xcd\x85\xa6\x0c\x3c\x37\xd3\xfb\xd8\x80"
 +      "\x5c\x77\xf1\x5f\xc6\xb1\xfd\xfe\x61\x4e\xe0\xa7\xc8\xfd\xb4\xc0" },
 +    { "123456789012345678901234567890123456789012345678901234567890"
 +      "12345678901234567890",
 +      "\xf3\x71\xbc\x4a\x31\x1f\x2b\x00\x9e\xef\x95\x2d\xd8\x3c\xa8\x0e"
 +      "\x2b\x60\x02\x6c\x8e\x93\x55\x92\xd0\xf9\xc3\x08\x45\x3c\x81\x3e" }
 +  };
 +#define ntests (sizeof (tests) / sizeof (tests[0]))
 +
 +
 +static const struct
 +{
 +  const char *salt;
 +  const char *input;
 +  const char *expected;
 +} tests2[] =
 +{
 +  { "$5$saltstring", "Hello world!",
 +    "$5$saltstring$5B8vYYiY.CVt1RlTTf8KbXBH3hsxY/GNooZaBBGWEc5" },
 +  { "$5$rounds=10000$saltstringsaltstring", "Hello world!",
 +    "$5$rounds=10000$saltstringsaltst$3xv.VbSHBb41AL9AvLeujZkZRBAwqFMz2."
 +    "opqey6IcA" },
 +  { "$5$rounds=5000$toolongsaltstring", "This is just a test",
 +    "$5$rounds=5000$toolongsaltstrin$Un/5jzAHMgOGZ5.mWJpuVolil07guHPvOW8"
 +    "mGRcvxa5" },
 +  { "$5$rounds=1400$anotherlongsaltstring",
 +    "a very much longer text to encrypt.  This one even stretches over more"
 +    "than one line.",
 +    "$5$rounds=1400$anotherlongsalts$Rx.j8H.h8HjEDGomFU8bDkXm3XIUnzyxf12"
 +    "oP84Bnq1" },
 +  { "$5$rounds=77777$short",
 +    "we have a short salt string but not a short password",
 +    "$5$rounds=77777$short$JiO1O3ZpDAxGJeaDIuqCoEFysAe1mZNJRs3pw0KQRd/" },
 +  { "$5$rounds=123456$asaltof16chars..", "a short string",
 +    "$5$rounds=123456$asaltof16chars..$gP3VQ/6X7UUEW3HkBn2w1/Ptq2jxPyzV/"
 +    "cZKmF/wJvD" },
 +  { "$5$rounds=10$roundstoolow", "the minimum number is still observed",
 +    "$5$rounds=1000$roundstoolow$yfvwcWrQ8l/K0DAWyuPMDNHpIVlTQebY9l/gL97"
 +    "2bIC" },
 +};
 +#define ntests2 (sizeof (tests2) / sizeof (tests2[0]))
 +
 +
 +int
 +main (void)
 +{
 +  struct sha256_ctx ctx;
 +  char sum[32];
 +  int result = 0;
 +  int i, cnt;
 +
 +  for (cnt = 0; cnt < (int) ntests; ++cnt)
 +    {
 +      sha256_init_ctx (&ctx);
 +      sha256_process_bytes (tests[cnt].input, strlen (tests[cnt].input), &ctx);
 +      sha256_finish_ctx (&ctx, sum);
 +      if (memcmp (tests[cnt].result, sum, 32) != 0)
 +	{
 +	  printf ("test %d run %d failed\n", cnt, 1);
 +	  result = 1;
 +	}
 +
 +      sha256_init_ctx (&ctx);
 +      for (i = 0; tests[cnt].input[i] != '\0'; ++i)
 +	sha256_process_bytes (&tests[cnt].input[i], 1, &ctx);
 +      sha256_finish_ctx (&ctx, sum);
 +      if (memcmp (tests[cnt].result, sum, 32) != 0)
 +	{
 +	  printf ("test %d run %d failed\n", cnt, 2);
 +	  result = 1;
 +	}
 +    }
 +
 +  /* Test vector from FIPS 180-2: appendix B.3.  */
 +  char buf[1000];
 +  memset (buf, 'a', sizeof (buf));
 +  sha256_init_ctx (&ctx);
 +  for (i = 0; i < 1000; ++i)
 +    sha256_process_bytes (buf, sizeof (buf), &ctx);
 +  sha256_finish_ctx (&ctx, sum);
 +  static const char expected[32] =
 +    "\xcd\xc7\x6e\x5c\x99\x14\xfb\x92\x81\xa1\xc7\xe2\x84\xd7\x3e\x67"
 +    "\xf1\x80\x9a\x48\xa4\x97\x20\x0e\x04\x6d\x39\xcc\xc7\x11\x2c\xd0";
 +  if (memcmp (expected, sum, 32) != 0)
 +    {
 +      printf ("test %d failed\n", cnt);
 +      result = 1;
 +    }
 +
 +  for (cnt = 0; cnt < ntests2; ++cnt)
 +    {
 +      char *cp = sha256_crypt (tests2[cnt].input, tests2[cnt].salt);
 +
 +      if (strcmp (cp, tests2[cnt].expected) != 0)
 +	{
 +	  printf ("test %d: expected \"%s\", got \"%s\"\n",
 +		  cnt, tests2[cnt].expected, cp);
 +	  result = 1;
 +	}
 +    }
 +
 +  if (result == 0)
 +    puts ("all tests OK");
 +
 +  return result;
 +}
 +#endif
 Index: crypt-sha512.c
 ===================================================================
 RCS file: crypt-sha512.c
 diff -N crypt-sha512.c
 --- /dev/null	1 Jan 1970 00:00:00 -0000
 +++ crypt-sha512.c	20 Jul 2010 04:11:44 -0000
 @@ -0,0 +1,824 @@
 +/* SHA512-based Unix crypt implementation.
 +   Released into the Public Domain by Ulrich Drepper <drepper at redhat.com>.  */
 +
 +#include <errno.h>
 +#include <limits.h>
 +#include <stdbool.h>
 +#include <stdint.h>
 +#include <stdio.h>
 +#include <stdlib.h>
 +#include <string.h>
 +#include <sys/param.h>
 +#include <sys/types.h>
 +
 +/* sys/param.h must be included before checking OS and C Library */
 +#if defined(__GNU_LIBRARY__)
 +/* OS with GNU C Library (Linux or Hurd(?)) */
 +#include <endian.h>
 +#elif (defined(BSD) && (BSD >= 199306))
 +/* 4.4BSD code base or newer */
 +#include <sys/endian.h>
 +#else
 +/* Other OS (such as Solaris or AIX?) */
 +#error I don't know what to do.
 +#endif
 +
 +/* Structure to save state of computation between the single steps.  */
 +struct sha512_ctx
 +{
 +  uint64_t H[8];
 +
 +  uint64_t total[2];
 +  uint64_t buflen;
 +  char buffer[256];	/* NB: always correctly aligned for uint64_t.  */
 +};
 +
 +
 +#if __BYTE_ORDER == __LITTLE_ENDIAN
 +# define SWAP(n) \
 +  (((n) << 56)					\
 +   | (((n) & 0xff00) << 40)			\
 +   | (((n) & 0xff0000) << 24)			\
 +   | (((n) & 0xff000000) << 8)			\
 +   | (((n) >> 8) & 0xff000000)			\
 +   | (((n) >> 24) & 0xff0000)			\
 +   | (((n) >> 40) & 0xff00)			\
 +   | ((n) >> 56))
 +#else
 +# define SWAP(n) (n)
 +#endif
 +
 +
 +/* This array contains the bytes used to pad the buffer to the next
 +   64-byte boundary.  (FIPS 180-2:5.1.2)  */
 +static const unsigned char fillbuf[128] = { 0x80, 0 /* , 0, 0, ...  */ };
 +
 +
 +/* Constants for SHA512 from FIPS 180-2:4.2.3.  */
 +static const uint64_t K[80] =
 +  {
 +    UINT64_C (0x428a2f98d728ae22), UINT64_C (0x7137449123ef65cd),
 +    UINT64_C (0xb5c0fbcfec4d3b2f), UINT64_C (0xe9b5dba58189dbbc),
 +    UINT64_C (0x3956c25bf348b538), UINT64_C (0x59f111f1b605d019),
 +    UINT64_C (0x923f82a4af194f9b), UINT64_C (0xab1c5ed5da6d8118),
 +    UINT64_C (0xd807aa98a3030242), UINT64_C (0x12835b0145706fbe),
 +    UINT64_C (0x243185be4ee4b28c), UINT64_C (0x550c7dc3d5ffb4e2),
 +    UINT64_C (0x72be5d74f27b896f), UINT64_C (0x80deb1fe3b1696b1),
 +    UINT64_C (0x9bdc06a725c71235), UINT64_C (0xc19bf174cf692694),
 +    UINT64_C (0xe49b69c19ef14ad2), UINT64_C (0xefbe4786384f25e3),
 +    UINT64_C (0x0fc19dc68b8cd5b5), UINT64_C (0x240ca1cc77ac9c65),
 +    UINT64_C (0x2de92c6f592b0275), UINT64_C (0x4a7484aa6ea6e483),
 +    UINT64_C (0x5cb0a9dcbd41fbd4), UINT64_C (0x76f988da831153b5),
 +    UINT64_C (0x983e5152ee66dfab), UINT64_C (0xa831c66d2db43210),
 +    UINT64_C (0xb00327c898fb213f), UINT64_C (0xbf597fc7beef0ee4),
 +    UINT64_C (0xc6e00bf33da88fc2), UINT64_C (0xd5a79147930aa725),
 +    UINT64_C (0x06ca6351e003826f), UINT64_C (0x142929670a0e6e70),
 +    UINT64_C (0x27b70a8546d22ffc), UINT64_C (0x2e1b21385c26c926),
 +    UINT64_C (0x4d2c6dfc5ac42aed), UINT64_C (0x53380d139d95b3df),
 +    UINT64_C (0x650a73548baf63de), UINT64_C (0x766a0abb3c77b2a8),
 +    UINT64_C (0x81c2c92e47edaee6), UINT64_C (0x92722c851482353b),
 +    UINT64_C (0xa2bfe8a14cf10364), UINT64_C (0xa81a664bbc423001),
 +    UINT64_C (0xc24b8b70d0f89791), UINT64_C (0xc76c51a30654be30),
 +    UINT64_C (0xd192e819d6ef5218), UINT64_C (0xd69906245565a910),
 +    UINT64_C (0xf40e35855771202a), UINT64_C (0x106aa07032bbd1b8),
 +    UINT64_C (0x19a4c116b8d2d0c8), UINT64_C (0x1e376c085141ab53),
 +    UINT64_C (0x2748774cdf8eeb99), UINT64_C (0x34b0bcb5e19b48a8),
 +    UINT64_C (0x391c0cb3c5c95a63), UINT64_C (0x4ed8aa4ae3418acb),
 +    UINT64_C (0x5b9cca4f7763e373), UINT64_C (0x682e6ff3d6b2b8a3),
 +    UINT64_C (0x748f82ee5defb2fc), UINT64_C (0x78a5636f43172f60),
 +    UINT64_C (0x84c87814a1f0ab72), UINT64_C (0x8cc702081a6439ec),
 +    UINT64_C (0x90befffa23631e28), UINT64_C (0xa4506cebde82bde9),
 +    UINT64_C (0xbef9a3f7b2c67915), UINT64_C (0xc67178f2e372532b),
 +    UINT64_C (0xca273eceea26619c), UINT64_C (0xd186b8c721c0c207),
 +    UINT64_C (0xeada7dd6cde0eb1e), UINT64_C (0xf57d4f7fee6ed178),
 +    UINT64_C (0x06f067aa72176fba), UINT64_C (0x0a637dc5a2c898a6),
 +    UINT64_C (0x113f9804bef90dae), UINT64_C (0x1b710b35131c471b),
 +    UINT64_C (0x28db77f523047d84), UINT64_C (0x32caab7b40c72493),
 +    UINT64_C (0x3c9ebe0a15c9bebc), UINT64_C (0x431d67c49c100d4c),
 +    UINT64_C (0x4cc5d4becb3e42b6), UINT64_C (0x597f299cfc657e2a),
 +    UINT64_C (0x5fcb6fab3ad6faec), UINT64_C (0x6c44198c4a475817)
 +  };
 +
 +
 +#ifndef _GNU_SOURCE
 +
 +/* __stpncpy(3) is GNU extension and not available with non-glibc OS
 +   such as *BSD. So define it as static function for them. */
 +static char*
 +__stpncpy(char *dst, const char* src, size_t len)
 +{
 +  char *p;
 +  size_t n;
 +
 +  strncpy(dst, src, len);
 +  n = strlen(src);
 +  if (n < len)
 +    p = dst + n;
 +  else
 +    p = dst + len;
 +  return p;
 +}
 +
 +#endif /* !_GNU_SOURCE */
 +
 +/* Process LEN bytes of BUFFER, accumulating context into CTX.
 +   It is assumed that LEN % 128 == 0.  */
 +static void
 +sha512_process_block (const void *buffer, size_t len, struct sha512_ctx *ctx)
 +{
 +  const uint64_t *words = buffer;
 +  size_t nwords = len / sizeof (uint64_t);
 +  uint64_t a = ctx->H[0];
 +  uint64_t b = ctx->H[1];
 +  uint64_t c = ctx->H[2];
 +  uint64_t d = ctx->H[3];
 +  uint64_t e = ctx->H[4];
 +  uint64_t f = ctx->H[5];
 +  uint64_t g = ctx->H[6];
 +  uint64_t h = ctx->H[7];
 +
 +  /* First increment the byte count.  FIPS 180-2 specifies the possible
 +     length of the file up to 2^128 bits.  Here we only compute the
 +     number of bytes.  Do a double word increment.  */
 +  ctx->total[0] += len;
 +  if (ctx->total[0] < len)
 +    ++ctx->total[1];
 +
 +  /* Process all bytes in the buffer with 128 bytes in each round of
 +     the loop.  */
 +  while (nwords > 0)
 +    {
 +      uint64_t W[80];
 +      uint64_t a_save = a;
 +      uint64_t b_save = b;
 +      uint64_t c_save = c;
 +      uint64_t d_save = d;
 +      uint64_t e_save = e;
 +      uint64_t f_save = f;
 +      uint64_t g_save = g;
 +      uint64_t h_save = h;
 +      unsigned int t;
 +
 +      /* Operators defined in FIPS 180-2:4.1.2.  */
 +#define Ch(x, y, z) ((x & y) ^ (~x & z))
 +#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
 +#define S0(x) (CYCLIC (x, 28) ^ CYCLIC (x, 34) ^ CYCLIC (x, 39))
 +#define S1(x) (CYCLIC (x, 14) ^ CYCLIC (x, 18) ^ CYCLIC (x, 41))
 +#define R0(x) (CYCLIC (x, 1) ^ CYCLIC (x, 8) ^ (x >> 7))
 +#define R1(x) (CYCLIC (x, 19) ^ CYCLIC (x, 61) ^ (x >> 6))
 +
 +      /* It is unfortunate that C does not provide an operator for
 +	 cyclic rotation.  Hope the C compiler is smart enough.  */
 +#define CYCLIC(w, s) ((w >> s) | (w << (64 - s)))
 +
 +      /* Compute the message schedule according to FIPS 180-2:6.3.2 step 2.  */
 +      for (t = 0; t < 16; ++t)
 +	{
 +	  W[t] = SWAP (*words);
 +	  ++words;
 +	}
 +      for (t = 16; t < 80; ++t)
 +	W[t] = R1 (W[t - 2]) + W[t - 7] + R0 (W[t - 15]) + W[t - 16];
 +
 +      /* The actual computation according to FIPS 180-2:6.3.2 step 3.  */
 +      for (t = 0; t < 80; ++t)
 +	{
 +	  uint64_t T1 = h + S1 (e) + Ch (e, f, g) + K[t] + W[t];
 +	  uint64_t T2 = S0 (a) + Maj (a, b, c);
 +	  h = g;
 +	  g = f;
 +	  f = e;
 +	  e = d + T1;
 +	  d = c;
 +	  c = b;
 +	  b = a;
 +	  a = T1 + T2;
 +	}
 +
 +      /* Add the starting values of the context according to FIPS 180-2:6.3.2
 +	 step 4.  */
 +      a += a_save;
 +      b += b_save;
 +      c += c_save;
 +      d += d_save;
 +      e += e_save;
 +      f += f_save;
 +      g += g_save;
 +      h += h_save;
 +
 +      /* Prepare for the next round.  */
 +      nwords -= 16;
 +    }
 +
 +  /* Put checksum in context given as argument.  */
 +  ctx->H[0] = a;
 +  ctx->H[1] = b;
 +  ctx->H[2] = c;
 +  ctx->H[3] = d;
 +  ctx->H[4] = e;
 +  ctx->H[5] = f;
 +  ctx->H[6] = g;
 +  ctx->H[7] = h;
 +}
 +
 +
 +/* Initialize structure containing state of computation.
 +   (FIPS 180-2:5.3.3)  */
 +static void
 +sha512_init_ctx (struct sha512_ctx *ctx)
 +{
 +  ctx->H[0] = UINT64_C (0x6a09e667f3bcc908);
 +  ctx->H[1] = UINT64_C (0xbb67ae8584caa73b);
 +  ctx->H[2] = UINT64_C (0x3c6ef372fe94f82b);
 +  ctx->H[3] = UINT64_C (0xa54ff53a5f1d36f1);
 +  ctx->H[4] = UINT64_C (0x510e527fade682d1);
 +  ctx->H[5] = UINT64_C (0x9b05688c2b3e6c1f);
 +  ctx->H[6] = UINT64_C (0x1f83d9abfb41bd6b);
 +  ctx->H[7] = UINT64_C (0x5be0cd19137e2179);
 +
 +  ctx->total[0] = ctx->total[1] = 0;
 +  ctx->buflen = 0;
 +}
 +
 +
 +/* Process the remaining bytes in the internal buffer and the usual
 +   prolog according to the standard and write the result to RESBUF.
 +
 +   IMPORTANT: On some systems it is required that RESBUF is correctly
 +   aligned for a 32 bits value.  */
 +static void *
 +sha512_finish_ctx (struct sha512_ctx *ctx, void *resbuf)
 +{
 +  /* Take yet unprocessed bytes into account.  */
 +  uint64_t bytes = ctx->buflen;
 +  size_t pad;
 +
 +  /* Now count remaining bytes.  */
 +  ctx->total[0] += bytes;
 +  if (ctx->total[0] < bytes)
 +    ++ctx->total[1];
 +
 +  pad = bytes >= 112 ? 128 + 112 - bytes : 112 - bytes;
 +  memcpy (&ctx->buffer[bytes], fillbuf, pad);
 +
 +  /* Put the 128-bit file length in *bits* at the end of the buffer.  */
 +  *(uint64_t *) &ctx->buffer[bytes + pad + 8] = SWAP (ctx->total[0] << 3);
 +  *(uint64_t *) &ctx->buffer[bytes + pad] = SWAP ((ctx->total[1] << 3) |
 +						  (ctx->total[0] >> 61));
 +
 +  /* Process last bytes.  */
 +  sha512_process_block (ctx->buffer, bytes + pad + 16, ctx);
 +
 +  /* Put result from CTX in first 64 bytes following RESBUF.  */
 +  unsigned int i;
 +  for (i = 0; i < 8; ++i)
 +    ((uint64_t *) resbuf)[i] = SWAP (ctx->H[i]);
 +
 +  return resbuf;
 +}
 +
 +
 +static void
 +sha512_process_bytes (const void *buffer, size_t len, struct sha512_ctx *ctx)
 +{
 +  /* When we already have some bits in our internal buffer concatenate
 +     both inputs first.  */
 +  if (ctx->buflen != 0)
 +    {
 +      size_t left_over = ctx->buflen;
 +      size_t add = 256 - left_over > len ? len : 256 - left_over;
 +
 +      memcpy (&ctx->buffer[left_over], buffer, add);
 +      ctx->buflen += add;
 +
 +      if (ctx->buflen > 128)
 +	{
 +	  sha512_process_block (ctx->buffer, ctx->buflen & ~127, ctx);
 +
 +	  ctx->buflen &= 127;
 +	  /* The regions in the following copy operation cannot overlap.  */
 +	  memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~127],
 +		  ctx->buflen);
 +	}
 +
 +      buffer = (const char *) buffer + add;
 +      len -= add;
 +    }
 +
 +  /* Process available complete blocks.  */
 +  if (len >= 128)
 +    {
 +#if !_STRING_ARCH_unaligned
 +/* To check alignment gcc has an appropriate operator.  Other
 +   compilers don't.  */
 +# if __GNUC__ >= 2
 +#  define UNALIGNED_P(p) (((uintptr_t) p) % __alignof__ (uint64_t) != 0)
 +# else
 +#  define UNALIGNED_P(p) (((uintptr_t) p) % sizeof (uint64_t) != 0)
 +# endif
 +      if (UNALIGNED_P (buffer))
 +	while (len > 128)
 +	  {
 +	    sha512_process_block (memcpy (ctx->buffer, buffer, 128), 128,
 +				    ctx);
 +	    buffer = (const char *) buffer + 128;
 +	    len -= 128;
 +	  }
 +      else
 +#endif
 +	{
 +	  sha512_process_block (buffer, len & ~127, ctx);
 +	  buffer = (const char *) buffer + (len & ~127);
 +	  len &= 127;
 +	}
 +    }
 +
 +  /* Move remaining bytes into internal buffer.  */
 +  if (len > 0)
 +    {
 +      size_t left_over = ctx->buflen;
 +
 +      memcpy (&ctx->buffer[left_over], buffer, len);
 +      left_over += len;
 +      if (left_over >= 128)
 +	{
 +	  sha512_process_block (ctx->buffer, 128, ctx);
 +	  left_over -= 128;
 +	  memcpy (ctx->buffer, &ctx->buffer[128], left_over);
 +	}
 +      ctx->buflen = left_over;
 +    }
 +}
 +
 +
 +/* Define our magic string to mark salt for SHA512 "encryption"
 +   replacement.  */
 +static const char sha512_salt_prefix[] = "$6$";
 +
 +/* Prefix for optional rounds specification.  */
 +static const char sha512_rounds_prefix[] = "rounds=";
 +
 +/* Maximum salt string length.  */
 +#define SALT_LEN_MAX 16
 +/* Default number of rounds if not explicitly specified.  */
 +#define ROUNDS_DEFAULT 5000
 +/* Minimum number of rounds.  */
 +#define ROUNDS_MIN 1000
 +/* Maximum number of rounds.  */
 +#define ROUNDS_MAX 999999999
 +
 +/* Table with characters for base64 transformation.  */
 +static const char b64t[64] =
 +"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
 +
 +
 +static char *
 +sha512_crypt_r (const char *key, const char *salt, char *buffer, int buflen)
 +{
 +  unsigned char alt_result[64]
 +    __attribute__ ((__aligned__ (__alignof__ (uint64_t))));
 +  unsigned char temp_result[64]
 +    __attribute__ ((__aligned__ (__alignof__ (uint64_t))));
 +  struct sha512_ctx ctx;
 +  struct sha512_ctx alt_ctx;
 +  size_t salt_len;
 +  size_t key_len;
 +  size_t cnt;
 +  char *cp;
 +  char *copied_key = NULL;
 +  char *copied_salt = NULL;
 +  char *p_bytes;
 +  char *s_bytes;
 +  /* Default number of rounds.  */
 +  size_t rounds = ROUNDS_DEFAULT;
 +  bool rounds_custom = false;
 +
 +  /* Find beginning of salt string.  The prefix should normally always
 +     be present.  Just in case it is not.  */
 +  if (strncmp (sha512_salt_prefix, salt, sizeof (sha512_salt_prefix) - 1) == 0)
 +    /* Skip salt prefix.  */
 +    salt += sizeof (sha512_salt_prefix) - 1;
 +
 +  if (strncmp (salt, sha512_rounds_prefix, sizeof (sha512_rounds_prefix) - 1)
 +      == 0)
 +    {
 +      const char *num = salt + sizeof (sha512_rounds_prefix) - 1;
 +      char *endp;
 +      unsigned long int srounds = strtoul (num, &endp, 10);
 +      if (*endp == '$')
 +	{
 +	  salt = endp + 1;
 +	  rounds = MAX (ROUNDS_MIN, MIN (srounds, ROUNDS_MAX));
 +	  rounds_custom = true;
 +	}
 +    }
 +
 +  salt_len = MIN (strcspn (salt, "$"), SALT_LEN_MAX);
 +  key_len = strlen (key);
 +
 +  if ((key - (char *) 0) % __alignof__ (uint64_t) != 0)
 +    {
 +      char *tmp = (char *) alloca (key_len + __alignof__ (uint64_t));
 +      key = copied_key =
 +	memcpy (tmp + __alignof__ (uint64_t)
 +		- (tmp - (char *) 0) % __alignof__ (uint64_t),
 +		key, key_len);
 +    }
 +
 +  if ((salt - (char *) 0) % __alignof__ (uint64_t) != 0)
 +    {
 +      char *tmp = (char *) alloca (salt_len + __alignof__ (uint64_t));
 +      salt = copied_salt =
 +	memcpy (tmp + __alignof__ (uint64_t)
 +		- (tmp - (char *) 0) % __alignof__ (uint64_t),
 +		salt, salt_len);
 +    }
 +
 +  /* Prepare for the real work.  */
 +  sha512_init_ctx (&ctx);
 +
 +  /* Add the key string.  */
 +  sha512_process_bytes (key, key_len, &ctx);
 +
 +  /* The last part is the salt string.  This must be at most 8
 +     characters and it ends at the first `$' character (for
 +     compatibility with existing implementations).  */
 +  sha512_process_bytes (salt, salt_len, &ctx);
 +
 +
 +  /* Compute alternate SHA512 sum with input KEY, SALT, and KEY.  The
 +     final result will be added to the first context.  */
 +  sha512_init_ctx (&alt_ctx);
 +
 +  /* Add key.  */
 +  sha512_process_bytes (key, key_len, &alt_ctx);
 +
 +  /* Add salt.  */
 +  sha512_process_bytes (salt, salt_len, &alt_ctx);
 +
 +  /* Add key again.  */
 +  sha512_process_bytes (key, key_len, &alt_ctx);
 +
 +  /* Now get result of this (64 bytes) and add it to the other
 +     context.  */
 +  sha512_finish_ctx (&alt_ctx, alt_result);
 +
 +  /* Add for any character in the key one byte of the alternate sum.  */
 +  for (cnt = key_len; cnt > 64; cnt -= 64)
 +    sha512_process_bytes (alt_result, 64, &ctx);
 +  sha512_process_bytes (alt_result, cnt, &ctx);
 +
 +  /* Take the binary representation of the length of the key and for every
 +     1 add the alternate sum, for every 0 the key.  */
 +  for (cnt = key_len; cnt > 0; cnt >>= 1)
 +    if ((cnt & 1) != 0)
 +      sha512_process_bytes (alt_result, 64, &ctx);
 +    else
 +      sha512_process_bytes (key, key_len, &ctx);
 +
 +  /* Create intermediate result.  */
 +  sha512_finish_ctx (&ctx, alt_result);
 +
 +  /* Start computation of P byte sequence.  */
 +  sha512_init_ctx (&alt_ctx);
 +
 +  /* For every character in the password add the entire password.  */
 +  for (cnt = 0; cnt < key_len; ++cnt)
 +    sha512_process_bytes (key, key_len, &alt_ctx);
 +
 +  /* Finish the digest.  */
 +  sha512_finish_ctx (&alt_ctx, temp_result);
 +
 +  /* Create byte sequence P.  */
 +  cp = p_bytes = alloca (key_len);
 +  for (cnt = key_len; cnt >= 64; cnt -= 64) {
 +    memcpy (cp, temp_result, 64);
 +    cp += 64;
 +  }
 +  memcpy (cp, temp_result, cnt);
 +
 +  /* Start computation of S byte sequence.  */
 +  sha512_init_ctx (&alt_ctx);
 +
 +  /* For every character in the password add the entire password.  */
 +  for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt)
 +    sha512_process_bytes (salt, salt_len, &alt_ctx);
 +
 +  /* Finish the digest.  */
 +  sha512_finish_ctx (&alt_ctx, temp_result);
 +
 +  /* Create byte sequence S.  */
 +  cp = s_bytes = alloca (salt_len);
 +  for (cnt = salt_len; cnt >= 64; cnt -= 64) {
 +    memcpy (cp, temp_result, 64);
 +    cp += 64;
 +  }
 +  memcpy (cp, temp_result, cnt);
 +
 +  /* Repeatedly run the collected hash value through SHA512 to burn
 +     CPU cycles.  */
 +  for (cnt = 0; cnt < rounds; ++cnt)
 +    {
 +      /* New context.  */
 +      sha512_init_ctx (&ctx);
 +
 +      /* Add key or last result.  */
 +      if ((cnt & 1) != 0)
 +	sha512_process_bytes (p_bytes, key_len, &ctx);
 +      else
 +	sha512_process_bytes (alt_result, 64, &ctx);
 +
 +      /* Add salt for numbers not divisible by 3.  */
 +      if (cnt % 3 != 0)
 +	sha512_process_bytes (s_bytes, salt_len, &ctx);
 +
 +      /* Add key for numbers not divisible by 7.  */
 +      if (cnt % 7 != 0)
 +	sha512_process_bytes (p_bytes, key_len, &ctx);
 +
 +      /* Add key or last result.  */
 +      if ((cnt & 1) != 0)
 +	sha512_process_bytes (alt_result, 64, &ctx);
 +      else
 +	sha512_process_bytes (p_bytes, key_len, &ctx);
 +
 +      /* Create intermediate result.  */
 +      sha512_finish_ctx (&ctx, alt_result);
 +    }
 +
 +  /* Now we can construct the result string.  It consists of three
 +     parts.  */
 +  cp = __stpncpy (buffer, sha512_salt_prefix, MAX (0, buflen));
 +  buflen -= sizeof (sha512_salt_prefix) - 1;
 +
 +  if (rounds_custom)
 +    {
 +      int n = snprintf (cp, MAX (0, buflen), "%s%zu$",
 +			sha512_rounds_prefix, rounds);
 +      cp += n;
 +      buflen -= n;
 +    }
 +
 +  cp = __stpncpy (cp, salt, MIN ((size_t) MAX (0, buflen), salt_len));
 +  buflen -= MIN ((size_t) MAX (0, buflen), salt_len);
 +
 +  if (buflen > 0)
 +    {
 +      *cp++ = '$';
 +      --buflen;
 +    }
 +
 +#define b64_from_24bit(B2, B1, B0, N)					      \
 +  do {									      \
 +    unsigned int w = ((B2) << 16) | ((B1) << 8) | (B0);			      \
 +    int n = (N);							      \
 +    while (n-- > 0 && buflen > 0)					      \
 +      {									      \
 +	*cp++ = b64t[w & 0x3f];						      \
 +	--buflen;							      \
 +	w >>= 6;							      \
 +      }									      \
 +  } while (0)
 +
 +  b64_from_24bit (alt_result[0], alt_result[21], alt_result[42], 4);
 +  b64_from_24bit (alt_result[22], alt_result[43], alt_result[1], 4);
 +  b64_from_24bit (alt_result[44], alt_result[2], alt_result[23], 4);
 +  b64_from_24bit (alt_result[3], alt_result[24], alt_result[45], 4);
 +  b64_from_24bit (alt_result[25], alt_result[46], alt_result[4], 4);
 +  b64_from_24bit (alt_result[47], alt_result[5], alt_result[26], 4);
 +  b64_from_24bit (alt_result[6], alt_result[27], alt_result[48], 4);
 +  b64_from_24bit (alt_result[28], alt_result[49], alt_result[7], 4);
 +  b64_from_24bit (alt_result[50], alt_result[8], alt_result[29], 4);
 +  b64_from_24bit (alt_result[9], alt_result[30], alt_result[51], 4);
 +  b64_from_24bit (alt_result[31], alt_result[52], alt_result[10], 4);
 +  b64_from_24bit (alt_result[53], alt_result[11], alt_result[32], 4);
 +  b64_from_24bit (alt_result[12], alt_result[33], alt_result[54], 4);
 +  b64_from_24bit (alt_result[34], alt_result[55], alt_result[13], 4);
 +  b64_from_24bit (alt_result[56], alt_result[14], alt_result[35], 4);
 +  b64_from_24bit (alt_result[15], alt_result[36], alt_result[57], 4);
 +  b64_from_24bit (alt_result[37], alt_result[58], alt_result[16], 4);
 +  b64_from_24bit (alt_result[59], alt_result[17], alt_result[38], 4);
 +  b64_from_24bit (alt_result[18], alt_result[39], alt_result[60], 4);
 +  b64_from_24bit (alt_result[40], alt_result[61], alt_result[19], 4);
 +  b64_from_24bit (alt_result[62], alt_result[20], alt_result[41], 4);
 +  b64_from_24bit (0, 0, alt_result[63], 2);
 +
 +  if (buflen <= 0)
 +    {
 +      errno = ERANGE;
 +      buffer = NULL;
 +    }
 +  else
 +    *cp = '\0';		/* Terminate the string.  */
 +
 +  /* Clear the buffer for the intermediate result so that people
 +     attaching to processes or reading core dumps cannot get any
 +     information.  We do it in this way to clear correct_words[]
 +     inside the SHA512 implementation as well.  */
 +  sha512_init_ctx (&ctx);
 +  sha512_finish_ctx (&ctx, alt_result);
 +  memset (temp_result, '\0', sizeof (temp_result));
 +  memset (p_bytes, '\0', key_len);
 +  memset (s_bytes, '\0', salt_len);
 +  memset (&ctx, '\0', sizeof (ctx));
 +  memset (&alt_ctx, '\0', sizeof (alt_ctx));
 +  if (copied_key != NULL)
 +    memset (copied_key, '\0', key_len);
 +  if (copied_salt != NULL)
 +    memset (copied_salt, '\0', salt_len);
 +
 +  return buffer;
 +}
 +
 +
 +/* This entry point is equivalent to the `crypt' function in Unix
 +   libcs.  */
 +char *
 +sha512_crypt (const char *key, const char *salt)
 +{
 +  /* We don't want to have an arbitrary limit in the size of the
 +     password.  We can compute an upper bound for the size of the
 +     result in advance and so we can prepare the buffer we pass to
 +     `sha512_crypt_r'.  */
 +  static char *buffer;
 +  static int buflen;
 +  int needed = (sizeof (sha512_salt_prefix) - 1
 +		+ sizeof (sha512_rounds_prefix) + 9 + 1
 +		+ strlen (salt) + 1 + 86 + 1);
 +
 +  if (buflen < needed)
 +    {
 +      char *new_buffer = (char *) realloc (buffer, needed);
 +      if (new_buffer == NULL)
 +	return NULL;
 +
 +      buffer = new_buffer;
 +      buflen = needed;
 +    }
 +
 +  return sha512_crypt_r (key, salt, buffer, buflen);
 +}
 +
 +
 +#ifdef TEST
 +static const struct
 +{
 +  const char *input;
 +  const char result[64];
 +} tests[] =
 +  {
 +    /* Test vectors from FIPS 180-2: appendix C.1.  */
 +    { "abc",
 +      "\xdd\xaf\x35\xa1\x93\x61\x7a\xba\xcc\x41\x73\x49\xae\x20\x41\x31"
 +      "\x12\xe6\xfa\x4e\x89\xa9\x7e\xa2\x0a\x9e\xee\xe6\x4b\x55\xd3\x9a"
 +      "\x21\x92\x99\x2a\x27\x4f\xc1\xa8\x36\xba\x3c\x23\xa3\xfe\xeb\xbd"
 +      "\x45\x4d\x44\x23\x64\x3c\xe8\x0e\x2a\x9a\xc9\x4f\xa5\x4c\xa4\x9f" },
 +    /* Test vectors from FIPS 180-2: appendix C.2.  */
 +    { "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn"
 +      "hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu",
 +      "\x8e\x95\x9b\x75\xda\xe3\x13\xda\x8c\xf4\xf7\x28\x14\xfc\x14\x3f"
 +      "\x8f\x77\x79\xc6\xeb\x9f\x7f\xa1\x72\x99\xae\xad\xb6\x88\x90\x18"
 +      "\x50\x1d\x28\x9e\x49\x00\xf7\xe4\x33\x1b\x99\xde\xc4\xb5\x43\x3a"
 +      "\xc7\xd3\x29\xee\xb6\xdd\x26\x54\x5e\x96\xe5\x5b\x87\x4b\xe9\x09" },
 +    /* Test vectors from the NESSIE project.  */
 +    { "",
 +      "\xcf\x83\xe1\x35\x7e\xef\xb8\xbd\xf1\x54\x28\x50\xd6\x6d\x80\x07"
 +      "\xd6\x20\xe4\x05\x0b\x57\x15\xdc\x83\xf4\xa9\x21\xd3\x6c\xe9\xce"
 +      "\x47\xd0\xd1\x3c\x5d\x85\xf2\xb0\xff\x83\x18\xd2\x87\x7e\xec\x2f"
 +      "\x63\xb9\x31\xbd\x47\x41\x7a\x81\xa5\x38\x32\x7a\xf9\x27\xda\x3e" },
 +    { "a",
 +      "\x1f\x40\xfc\x92\xda\x24\x16\x94\x75\x09\x79\xee\x6c\xf5\x82\xf2"
 +      "\xd5\xd7\xd2\x8e\x18\x33\x5d\xe0\x5a\xbc\x54\xd0\x56\x0e\x0f\x53"
 +      "\x02\x86\x0c\x65\x2b\xf0\x8d\x56\x02\x52\xaa\x5e\x74\x21\x05\x46"
 +      "\xf3\x69\xfb\xbb\xce\x8c\x12\xcf\xc7\x95\x7b\x26\x52\xfe\x9a\x75" },
 +    { "message digest",
 +      "\x10\x7d\xbf\x38\x9d\x9e\x9f\x71\xa3\xa9\x5f\x6c\x05\x5b\x92\x51"
 +      "\xbc\x52\x68\xc2\xbe\x16\xd6\xc1\x34\x92\xea\x45\xb0\x19\x9f\x33"
 +      "\x09\xe1\x64\x55\xab\x1e\x96\x11\x8e\x8a\x90\x5d\x55\x97\xb7\x20"
 +      "\x38\xdd\xb3\x72\xa8\x98\x26\x04\x6d\xe6\x66\x87\xbb\x42\x0e\x7c" },
 +    { "abcdefghijklmnopqrstuvwxyz",
 +      "\x4d\xbf\xf8\x6c\xc2\xca\x1b\xae\x1e\x16\x46\x8a\x05\xcb\x98\x81"
 +      "\xc9\x7f\x17\x53\xbc\xe3\x61\x90\x34\x89\x8f\xaa\x1a\xab\xe4\x29"
 +      "\x95\x5a\x1b\xf8\xec\x48\x3d\x74\x21\xfe\x3c\x16\x46\x61\x3a\x59"
 +      "\xed\x54\x41\xfb\x0f\x32\x13\x89\xf7\x7f\x48\xa8\x79\xc7\xb1\xf1" },
 +    { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
 +      "\x20\x4a\x8f\xc6\xdd\xa8\x2f\x0a\x0c\xed\x7b\xeb\x8e\x08\xa4\x16"
 +      "\x57\xc1\x6e\xf4\x68\xb2\x28\xa8\x27\x9b\xe3\x31\xa7\x03\xc3\x35"
 +      "\x96\xfd\x15\xc1\x3b\x1b\x07\xf9\xaa\x1d\x3b\xea\x57\x78\x9c\xa0"
 +      "\x31\xad\x85\xc7\xa7\x1d\xd7\x03\x54\xec\x63\x12\x38\xca\x34\x45" },
 +    { "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
 +      "\x1e\x07\xbe\x23\xc2\x6a\x86\xea\x37\xea\x81\x0c\x8e\xc7\x80\x93"
 +      "\x52\x51\x5a\x97\x0e\x92\x53\xc2\x6f\x53\x6c\xfc\x7a\x99\x96\xc4"
 +      "\x5c\x83\x70\x58\x3e\x0a\x78\xfa\x4a\x90\x04\x1d\x71\xa4\xce\xab"
 +      "\x74\x23\xf1\x9c\x71\xb9\xd5\xa3\xe0\x12\x49\xf0\xbe\xbd\x58\x94" },
 +    { "123456789012345678901234567890123456789012345678901234567890"
 +      "12345678901234567890",
 +      "\x72\xec\x1e\xf1\x12\x4a\x45\xb0\x47\xe8\xb7\xc7\x5a\x93\x21\x95"
 +      "\x13\x5b\xb6\x1d\xe2\x4e\xc0\xd1\x91\x40\x42\x24\x6e\x0a\xec\x3a"
 +      "\x23\x54\xe0\x93\xd7\x6f\x30\x48\xb4\x56\x76\x43\x46\x90\x0c\xb1"
 +      "\x30\xd2\xa4\xfd\x5d\xd1\x6a\xbb\x5e\x30\xbc\xb8\x50\xde\xe8\x43" }
 +  };
 +#define ntests (sizeof (tests) / sizeof (tests[0]))
 +
 +
 +static const struct
 +{
 +  const char *salt;
 +  const char *input;
 +  const char *expected;
 +} tests2[] =
 +{
 +  { "$6$saltstring", "Hello world!",
 +    "$6$saltstring$svn8UoSVapNtMuq1ukKS4tPQd8iKwSMHWjl/O817G3uBnIFNjnQJu"
 +    "esI68u4OTLiBFdcbYEdFCoEOfaS35inz1" },
 +  { "$6$rounds=10000$saltstringsaltstring", "Hello world!",
 +    "$6$rounds=10000$saltstringsaltst$OW1/O6BYHV6BcXZu8QVeXbDWra3Oeqh0sb"
 +    "HbbMCVNSnCM/UrjmM0Dp8vOuZeHBy/YTBmSK6H9qs/y3RnOaw5v." },
 +  { "$6$rounds=5000$toolongsaltstring", "This is just a test",
 +    "$6$rounds=5000$toolongsaltstrin$lQ8jolhgVRVhY4b5pZKaysCLi0QBxGoNeKQ"
 +    "zQ3glMhwllF7oGDZxUhx1yxdYcz/e1JSbq3y6JMxxl8audkUEm0" },
 +  { "$6$rounds=1400$anotherlongsaltstring",
 +    "a very much longer text to encrypt.  This one even stretches over more"
 +    "than one line.",
 +    "$6$rounds=1400$anotherlongsalts$POfYwTEok97VWcjxIiSOjiykti.o/pQs.wP"
 +    "vMxQ6Fm7I6IoYN3CmLs66x9t0oSwbtEW7o7UmJEiDwGqd8p4ur1" },
 +  { "$6$rounds=77777$short",
 +    "we have a short salt string but not a short password",
 +    "$6$rounds=77777$short$WuQyW2YR.hBNpjjRhpYD/ifIw05xdfeEyQoMxIXbkvr0g"
 +    "ge1a1x3yRULJ5CCaUeOxFmtlcGZelFl5CxtgfiAc0" },
 +  { "$6$rounds=123456$asaltof16chars..", "a short string",
 +    "$6$rounds=123456$asaltof16chars..$BtCwjqMJGx5hrJhZywWvt0RLE8uZ4oPwc"
 +    "elCjmw2kSYu.Ec6ycULevoBK25fs2xXgMNrCzIMVcgEJAstJeonj1" },
 +  { "$6$rounds=10$roundstoolow", "the minimum number is still observed",
 +    "$6$rounds=1000$roundstoolow$kUMsbe306n21p9R.FRkW3IGn.S9NPN0x50YhH1x"
 +    "hLsPuWGsUSklZt58jaTfF4ZEQpyUNGc0dqbpBYYBaHHrsX." },
 +};
 +#define ntests2 (sizeof (tests2) / sizeof (tests2[0]))
 +
 +
 +int
 +main (void)
 +{
 +  struct sha512_ctx ctx;
 +  char sum[64];
 +  int result = 0;
 +  int i, cnt;
 +
 +  for (cnt = 0; cnt < (int) ntests; ++cnt)
 +    {
 +      sha512_init_ctx (&ctx);
 +      sha512_process_bytes (tests[cnt].input, strlen (tests[cnt].input), &ctx);
 +      sha512_finish_ctx (&ctx, sum);
 +      if (memcmp (tests[cnt].result, sum, 64) != 0)
 +	{
 +	  printf ("test %d run %d failed\n", cnt, 1);
 +	  result = 1;
 +	}
 +
 +      sha512_init_ctx (&ctx);
 +      for (i = 0; tests[cnt].input[i] != '\0'; ++i)
 +	sha512_process_bytes (&tests[cnt].input[i], 1, &ctx);
 +      sha512_finish_ctx (&ctx, sum);
 +      if (memcmp (tests[cnt].result, sum, 64) != 0)
 +	{
 +	  printf ("test %d run %d failed\n", cnt, 2);
 +	  result = 1;
 +	}
 +    }
 +
 +  /* Test vector from FIPS 180-2: appendix C.3.  */
 +  char buf[1000];
 +  memset (buf, 'a', sizeof (buf));
 +  sha512_init_ctx (&ctx);
 +  for (i = 0; i < 1000; ++i)
 +    sha512_process_bytes (buf, sizeof (buf), &ctx);
 +  sha512_finish_ctx (&ctx, sum);
 +  static const char expected[64] =
 +    "\xe7\x18\x48\x3d\x0c\xe7\x69\x64\x4e\x2e\x42\xc7\xbc\x15\xb4\x63"
 +    "\x8e\x1f\x98\xb1\x3b\x20\x44\x28\x56\x32\xa8\x03\xaf\xa9\x73\xeb"
 +    "\xde\x0f\xf2\x44\x87\x7e\xa6\x0a\x4c\xb0\x43\x2c\xe5\x77\xc3\x1b"
 +    "\xeb\x00\x9c\x5c\x2c\x49\xaa\x2e\x4e\xad\xb2\x17\xad\x8c\xc0\x9b";
 +  if (memcmp (expected, sum, 64) != 0)
 +    {
 +      printf ("test %d failed\n", cnt);
 +      result = 1;
 +    }
 +
 +  for (cnt = 0; cnt < ntests2; ++cnt)
 +    {
 +      char *cp = sha512_crypt (tests2[cnt].input, tests2[cnt].salt);
 +
 +      if (strcmp (cp, tests2[cnt].expected) != 0)
 +	{
 +	  printf ("test %d: expected \"%s\", got \"%s\"\n",
 +	   	  cnt, tests2[cnt].expected, cp);
 +	  result = 1;
 +	}
 +    }
 +
 +  if (result == 0)
 +    puts ("all tests OK");
 +
 +  return result;
 +}
 +#endif
 Index: crypt.c
 ===================================================================
 RCS file: /usr0/freebsd/cvsroot/src/lib/libcrypt/crypt.c,v
 retrieving revision 1.23.32.1.4.1
 diff -u -r1.23.32.1.4.1 crypt.c
 --- crypt.c	14 Jun 2010 02:09:06 -0000	1.23.32.1.4.1
 +++ crypt.c	20 Jul 2010 04:11:44 -0000
 @@ -63,6 +63,16 @@
  		"$3$"
  	},
  	{
 +		"sha256",
 +		sha256_crypt,
 +		"$5$"
 +	},
 +	{
 +		"sha512",
 +		sha512_crypt,
 +		"$6$"
 +	},
 +	{
  		NULL,
  		NULL,
  		NULL
 Index: crypt.h
 ===================================================================
 RCS file: /usr0/freebsd/cvsroot/src/lib/libcrypt/crypt.h,v
 retrieving revision 1.8.32.1.4.1
 diff -u -r1.8.32.1.4.1 crypt.h
 --- crypt.h	14 Jun 2010 02:09:06 -0000	1.8.32.1.4.1
 +++ crypt.h	20 Jul 2010 04:11:44 -0000
 @@ -36,5 +36,7 @@
  char *crypt_md5(const char *pw, const char *salt);
  char *crypt_nthash(const char *pw, const char *salt);
  char *crypt_blowfish(const char *pw, const char *salt);
 +char *sha256_crypt (const char *pw, const char *salt);
 +char *sha512_crypt (const char *pw, const char *salt);
  
  extern void _crypt_to64(char *s, u_long v, int n);
 
 ----Next_Part(Mon_Nov_15_08_01_41_2010_891)----


More information about the freebsd-bugs mailing list