git: 114f9ea81cb8 - main - math/lcalc: upgrade to 2.1.0
- Go to: [ bottom of page ] [ top of archives ] [ this month ]
Date: Fri, 11 Apr 2025 16:35:32 UTC
The branch main has been updated by thierry:
URL: https://cgit.FreeBSD.org/ports/commit/?id=114f9ea81cb828f373fae402ea05b9db4cc7f91b
commit 114f9ea81cb828f373fae402ea05b9db4cc7f91b
Author: Thierry Thomas <thierry@FreeBSD.org>
AuthorDate: 2025-04-11 14:20:40 +0000
Commit: Thierry Thomas <thierry@FreeBSD.org>
CommitDate: 2025-04-11 16:34:50 +0000
math/lcalc: upgrade to 2.1.0
Release notes at https://gitlab.com/sagemath/lcalc/-/releases/2.1.0
---
math/lcalc/Makefile | 9 +-
math/lcalc/distinfo | 6 +-
math/lcalc/files/patch-src_libLfunction_Lcomplex.h | 1201 --------------------
math/lcalc/files/patch-src_libLfunction_Lglobals.h | 24 -
.../lcalc/files/patch-src_libLfunction_Makefile.am | 10 -
math/lcalc/files/patch-src_libLfunction_mpreal.h | 11 -
math/lcalc/pkg-plist | 4 +-
7 files changed, 8 insertions(+), 1257 deletions(-)
diff --git a/math/lcalc/Makefile b/math/lcalc/Makefile
index 245816bcac10..c4dc68f3cd21 100644
--- a/math/lcalc/Makefile
+++ b/math/lcalc/Makefile
@@ -1,6 +1,5 @@
PORTNAME= lcalc
-PORTVERSION= 2.0.5
-PORTREVISION= 4
+PORTVERSION= 2.1.0
CATEGORIES= math
MASTER_SITES= ftp://ftp.fu-berlin.de/unix/misc/sage/spkg/upstream/lcalc/
@@ -15,10 +14,8 @@ LIB_DEPENDS= libgmp.so:math/gmp \
libmpfr.so:math/mpfr \
libpari.so:math/pari
-#USE_GITHUB= yes
-#GH_ACCOUNT= agrawroh
-#GH_PROJECT= l-calc
-#GH_TAGNAME= 4c57471
+#USE_GITLAB= yes
+#GL_ACCOUNT= sagemath
USES= autoreconf compiler:c++11-lang gmake libtool localbase \
pkgconfig tar:xz
diff --git a/math/lcalc/distinfo b/math/lcalc/distinfo
index 23fafd79a282..dddbd06f510e 100644
--- a/math/lcalc/distinfo
+++ b/math/lcalc/distinfo
@@ -1,3 +1,3 @@
-TIMESTAMP = 1651073020
-SHA256 (lcalc-2.0.5.tar.xz) = d780c385579cc6ee45fa27ccd2d3a3c4157fbb5ef8cd1b8951d1028bbc64c035
-SIZE (lcalc-2.0.5.tar.xz) = 830360
+TIMESTAMP = 1744379557
+SHA256 (lcalc-2.1.0.tar.xz) = eca4f7de5f1129a9cec2cd2f012a8362c8489e746f07adae3229dd8eb2541f79
+SIZE (lcalc-2.1.0.tar.xz) = 831000
diff --git a/math/lcalc/files/patch-src_libLfunction_Lcomplex.h b/math/lcalc/files/patch-src_libLfunction_Lcomplex.h
deleted file mode 100644
index 71c3421e9a1d..000000000000
--- a/math/lcalc/files/patch-src_libLfunction_Lcomplex.h
+++ /dev/null
@@ -1,1201 +0,0 @@
---- src/libLfunction/Lcomplex.h.orig 2021-12-19 17:09:15 UTC
-+++ src/libLfunction/Lcomplex.h
-@@ -1,1198 +0,0 @@
--// The template and inlines for the -*- C++ -*- complex number classes.
--
--// Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002
--// Free Software Foundation, Inc.
--//
--// This file is part of the GNU ISO C++ Library. This library is free
--// software; you can redistribute it and/or modify it under the
--// terms of the GNU General Public License as published by the
--// Free Software Foundation; either version 2, or (at your option)
--// any later version.
--
--// This library is distributed in the hope that it will be useful,
--// but WITHOUT ANY WARRANTY; without even the implied warranty of
--// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
--// GNU General Public License for more details.
--
--// You should have received a copy of the GNU General Public License along
--// with this library; see the file COPYING. If not, write to the Free
--// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
--// USA.
--
--// As a special exception, you may use this file as part of a free software
--// library without restriction. Specifically, if other files instantiate
--// templates or use macros or inline functions from this file, or you compile
--// this file and link it with other files to produce an executable, this
--// file does not by itself cause the resulting executable to be covered by
--// the GNU General Public License. This exception does not however
--// invalidate any other reasons why the executable file might be covered by
--// the GNU General Public License.
--
--//
--// ISO C++ 14882: 26.2 Complex Numbers
--// Note: this is not a conforming implementation.
--// Initially implemented by Ulrich Drepper <drepper@cygnus.com>
--// Improved by Gabriel Dos Reis <dosreis@cmla.ens-cachan.fr>
--//
--
--/** @file complex
-- * This is a Standard C++ Library header. You should @c #include this header
-- * in your programs, rather than any of the "st[dl]_*.h" implementation files.
-- */
--
--#ifndef _CPP_COMPLEX
--#define _CPP_COMPLEX 1
--
--#pragma GCC system_header
--
--//no longer include:
--//#include <bits/cpp_type_traits.h> only thing used was is_floating...
--//gcc 4.0 cpp_type_traits.h is not compatible with gcc 3.3.
--//But Lcomplex.h file was derived
--//from gcc 3.3 complex header file. The only thing used from that header file is __is_floating, so I just
--//renamed it in this file to __is_floating_old (to avoid conflict with other includes of
--//<bits/cpp_type_traits.h>) and cut and paste and renamed the old __is_floating.
--
--#include <cmath>
--#include <sstream>
--
--namespace std
--{
-- // Forward declarations
-- template<typename _Tp> class complex;
-- template<> class complex<float>;
-- template<> class complex<double>;
-- template<> class complex<long double>;
--
-- template<typename _Tp> _Tp abs(const complex<_Tp>&);
-- template<typename _Tp> _Tp arg(const complex<_Tp>&);
-- template<typename _Tp> _Tp norm(const complex<_Tp>&);
--
-- template<typename _Tp> complex<_Tp> conj(const complex<_Tp>&);
-- template<typename _Tp> complex<_Tp> polar(const _Tp&, const _Tp& = 0);
--
-- // Transcendentals:
-- template<typename _Tp> complex<_Tp> cos(const complex<_Tp>&);
-- template<typename _Tp> complex<_Tp> cosh(const complex<_Tp>&);
-- template<typename _Tp> complex<_Tp> exp(const complex<_Tp>&);
-- template<typename _Tp> complex<_Tp> log(const complex<_Tp>&);
-- template<typename _Tp> complex<_Tp> log10(const complex<_Tp>&);
-- template<typename _Tp, typename _Up> complex<_Tp> pow(const complex<_Tp>&, const _Up&);
-- template<typename _Tp, typename _Up> complex<_Tp> pow(const _Up&, const complex<_Tp>&);
-- template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, int);
-- template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, const complex<_Tp>&);
-- template<typename _Tp> complex<_Tp> pow(const _Tp&, const complex<_Tp>&);
-- template<typename _Tp> complex<_Tp> sin(const complex<_Tp>&);
-- template<typename _Tp> complex<_Tp> sinh(const complex<_Tp>&);
-- template<typename _Tp> complex<_Tp> sqrt(const complex<_Tp>&);
-- template<typename _Tp> complex<_Tp> tan(const complex<_Tp>&);
-- template<typename _Tp> complex<_Tp> tanh(const complex<_Tp>&);
--
--
-- // 26.2.2 Primary template class complex
-- template<typename _Tp>
-- class complex
-- {
-- public:
-- typedef _Tp value_type;
--
-- complex(const _Tp& = 0, const _Tp& = 0);
-- complex(const int&);
-- complex(const double&);
--
-- // Let's the compiler synthetize the copy constructor
-- // complex (const complex<_Tp>&);
-- template<typename _Up>
-- complex(const _Up&);
-- template<typename _Up>
-- complex(const complex<_Up>&);
--
-- _Tp real() const;
-- _Tp imag() const;
--
-- template<typename _Up> complex<_Tp>& operator=(const _Up&);
-- complex<_Tp>& operator=(const _Tp&);
-- complex<_Tp>& operator=(const int&);
-- complex<_Tp>& operator=(const double&);
-- complex<_Tp>& operator+=(const _Tp&);
-- complex<_Tp>& operator-=(const _Tp&);
-- complex<_Tp>& operator*=(const _Tp&);
-- complex<_Tp>& operator/=(const _Tp&);
--
-- // Let's the compiler synthetize the
-- // copy and assignment operator
-- // complex<_Tp>& operator= (const complex<_Tp>&);
-- template<typename _Up>
-- complex<_Tp>& operator=(const complex<_Up>&);
-- template<typename _Up>
-- complex<_Tp>& operator+=(const complex<_Up>&);
-- template<typename _Up>
-- complex<_Tp>& operator-=(const complex<_Up>&);
-- template<typename _Up>
-- complex<_Tp>& operator*=(const complex<_Up>&);
-- template<typename _Up>
-- complex<_Tp>& operator/=(const complex<_Up>&);
--
-- friend void reset(complex<_Tp>& C) {
-- reset(C._M_real);
-- reset(C._M_imag);
-- }
--
-- private:
-- _Tp _M_real, _M_imag;
-- };
--
-- template<typename _Tp>
-- inline _Tp
-- complex<_Tp>::real() const { return _M_real; }
--
-- template<typename _Tp>
-- inline _Tp
-- complex<_Tp>::imag() const { return _M_imag; }
--
-- template<typename _Tp>
-- inline
-- complex<_Tp>::complex(const _Tp& __r, const _Tp& __i) {
-- _M_real=__r;
-- _M_imag=__i;
-- }
--
-- template<typename _Tp> template<typename _Up>
-- inline
-- complex<_Tp>::complex(const _Up& r) {
-- _M_real=r;
-- _M_imag=0.;
-- }
--
-- template<typename _Tp>
-- inline
-- complex<_Tp>::complex(const int& r) {
-- _M_real=r;
-- _M_imag=0.;
-- }
-- template<typename _Tp>
-- inline
-- complex<_Tp>::complex(const double& r) {
-- _M_real=r;
-- _M_imag=0.;
-- }
--
-- template<typename _Tp>
-- template<typename _Up>
-- inline
-- complex<_Tp>::complex(const complex<_Up>& __z)
-- : _M_real(__z.real()), _M_imag(__z.imag()) { }
--
-- template<typename _Tp> template<typename _Up>
-- complex<_Tp>&
-- complex<_Tp>::operator=(const _Up& __t)
-- {
-- _M_real = __t;
-- _M_imag = _Tp(0);
-- return *this;
-- }
--
--
-- template<typename _Tp>
-- complex<_Tp>&
-- complex<_Tp>::operator=(const _Tp& __t)
-- {
-- _M_real = __t;
-- _M_imag = _Tp(0);
-- return *this;
-- }
--
-- template<typename _Tp>
-- complex<_Tp>&
-- complex<_Tp>::operator=(const int& __t)
-- {
-- _M_real = __t;
-- _M_imag = _Tp(0);
-- return *this;
-- }
--
-- template<typename _Tp>
-- complex<_Tp>&
-- complex<_Tp>::operator=(const double& __t)
-- {
-- _M_real = __t;
-- _M_imag = _Tp(0);
-- return *this;
-- }
--
-- // 26.2.5/1
-- template<typename _Tp>
-- inline complex<_Tp>&
-- complex<_Tp>::operator+=(const _Tp& __t)
-- {
-- _M_real += __t;
-- return *this;
-- }
--
-- // 26.2.5/3
-- template<typename _Tp>
-- inline complex<_Tp>&
-- complex<_Tp>::operator-=(const _Tp& __t)
-- {
-- _M_real -= __t;
-- return *this;
-- }
--
-- // 26.2.5/5
-- template<typename _Tp>
-- complex<_Tp>&
-- complex<_Tp>::operator*=(const _Tp& __t)
-- {
-- _M_real *= __t;
-- _M_imag *= __t;
-- return *this;
-- }
--
-- // 26.2.5/7
-- template<typename _Tp>
-- complex<_Tp>&
-- complex<_Tp>::operator/=(const _Tp& __t)
-- {
-- _M_real /= __t;
-- _M_imag /= __t;
-- return *this;
-- }
--
-- template<typename _Tp>
-- template<typename _Up>
-- complex<_Tp>&
-- complex<_Tp>::operator=(const complex<_Up>& __z)
-- {
-- _M_real = __z.real();
-- _M_imag = __z.imag();
-- return *this;
-- }
--
-- // 26.2.5/9
-- template<typename _Tp>
-- template<typename _Up>
-- complex<_Tp>&
-- complex<_Tp>::operator+=(const complex<_Up>& __z)
-- {
-- _M_real += __z.real();
-- _M_imag += __z.imag();
-- return *this;
-- }
--
-- // 26.2.5/11
-- template<typename _Tp>
-- template<typename _Up>
-- complex<_Tp>&
-- complex<_Tp>::operator-=(const complex<_Up>& __z)
-- {
-- _M_real -= __z.real();
-- _M_imag -= __z.imag();
-- return *this;
-- }
--
-- // 26.2.5/13
-- // XXX: This is a grammar school implementation.
-- template<typename _Tp>
-- template<typename _Up>
-- complex<_Tp>&
-- complex<_Tp>::operator*=(const complex<_Up>& __z)
-- {
-- const _Tp __r = _M_real * __z.real() - _M_imag * __z.imag();
-- _M_imag = _M_real * __z.imag() + _M_imag * __z.real();
-- _M_real = __r;
-- return *this;
-- }
--
-- // 26.2.5/15
-- // XXX: This is a grammar school implementation.
-- template<typename _Tp>
-- template<typename _Up>
-- complex<_Tp>&
-- complex<_Tp>::operator/=(const complex<_Up>& __z)
-- {
-- const _Tp __r = _M_real * __z.real() + _M_imag * __z.imag();
-- const _Tp __n = norm(__z);
-- _M_imag = (_M_imag * __z.real() - _M_real * __z.imag()) / __n;
-- _M_real = __r / __n;
-- return *this;
-- }
--
-- // Operators:
-- template<typename _Tp>
-- inline complex<_Tp>
-- operator+(const complex<_Tp>& __x, const complex<_Tp>& __y)
-- { return complex<_Tp> (__x) += __y; }
--
-- template<typename _Tp,
-- typename _Up>
-- inline complex<_Tp>
-- operator+(const complex<_Tp>& __x, const _Up& __y)
-- { return complex<_Tp> (__x) += __y; }
--
-- template<typename _Tp,
-- typename _Up>
-- inline complex<_Tp>
-- operator+(const _Up& __x, const complex<_Tp>& __y)
-- { return complex<_Tp> (__y) += __x; }
--
-- template<typename _Tp>
-- inline complex<_Tp>
-- operator-(const complex<_Tp>& __x, const complex<_Tp>& __y)
-- { return complex<_Tp> (__x) -= __y; }
--
-- template<typename _Tp,
-- typename _Up>
-- inline complex<_Tp>
-- operator-(const complex<_Tp>& __x, const _Up& __y)
-- { return complex<_Tp> (__x) -= __y; }
--
-- template<typename _Tp,
-- typename _Up>
-- inline complex<_Tp>
-- operator-(const _Up& __x, const complex<_Tp>& __y)
-- { return complex<_Tp> (__x) -= __y; }
--
-- template<typename _Tp>
-- inline complex<_Tp>
-- operator*(const complex<_Tp>& __x, const complex<_Tp>& __y)
-- { return complex<_Tp> (__x) *= __y; }
--
-- template<typename _Tp,
-- typename _Up>
-- inline complex<_Tp>
-- operator*(const complex<_Tp>& __x, const _Up& __y)
-- { return complex<_Tp> (__x) *= __y; }
--
-- template<typename _Tp,
-- typename _Up>
-- inline complex<_Tp>
-- operator*(const _Up& __x, const complex<_Tp>& __y)
-- { return complex<_Tp> (__y) *= __x; }
--
-- template<typename _Tp>
-- inline complex<_Tp>
-- operator/(const complex<_Tp>& __x, const complex<_Tp>& __y)
-- { return complex<_Tp> (__x) /= __y; }
--
-- template<typename _Tp,
-- typename _Up>
-- inline complex<_Tp>
-- operator/(const complex<_Tp>& __x, const _Up& __y)
-- { return complex<_Tp> (__x) /= __y; }
--
-- template<typename _Tp,
-- typename _Up>
-- inline complex<_Tp>
-- operator/(const _Up& __x, const complex<_Tp>& __y)
-- { return complex<_Tp> (__x) /= __y; }
--
-- template<typename _Tp>
-- inline complex<_Tp>
-- operator+(const complex<_Tp>& __x)
-- { return __x; }
--
-- template<typename _Tp>
-- inline complex<_Tp>
-- operator-(const complex<_Tp>& __x)
-- { return complex<_Tp>(-__x.real(), -__x.imag()); }
--
-- template<typename _Tp>
-- inline bool
-- operator==(const complex<_Tp>& __x, const complex<_Tp>& __y)
-- { return __x.real() == __y.real() && __x.imag() == __y.imag(); }
--
-- template<typename _Tp, typename _Up>
-- inline bool
-- operator==(const complex<_Tp>& __x, const _Up& __y)
-- { return __x.real() == __y && __x.imag() == _Tp(0); }
--
-- template<typename _Tp, typename _Up>
-- inline bool
-- operator==(const _Up& __x, const complex<_Tp>& __y)
-- { return __x == __y.real() && _Tp(0) == __y.imag(); }
--
-- template<typename _Tp>
-- inline bool
-- operator!=(const complex<_Tp>& __x, const complex<_Tp>& __y)
-- { return __x.real() != __y.real() || __x.imag() != __y.imag(); }
--
-- template<typename _Tp, typename _Up>
-- inline bool
-- operator!=(const complex<_Tp>& __x, const _Up& __y)
-- { return __x.real() != __y || __x.imag() != _Tp(0); }
--
-- template<typename _Tp, typename _Up>
-- inline bool
-- operator!=(const _Up& __x, const complex<_Tp>& __y)
-- { return __x != __y.real() || _Tp(0) != __y.imag(); }
--
-- template<typename _Tp, typename _CharT, class _Traits>
-- basic_istream<_CharT, _Traits>&
-- operator>>(basic_istream<_CharT, _Traits>& __is, complex<_Tp>& __x)
-- {
-- _Tp __re_x, __im_x;
-- _CharT __ch;
-- __is >> __ch;
-- if (__ch == '(')
-- {
-- __is >> __re_x >> __ch;
-- if (__ch == ',')
-- {
-- __is >> __im_x >> __ch;
-- if (__ch == ')')
-- __x = complex<_Tp>(__re_x, __im_x);
-- else
-- __is.setstate(ios_base::failbit);
-- }
-- else if (__ch == ')')
-- __x = complex<_Tp>(__re_x, _Tp(0));
-- else
-- __is.setstate(ios_base::failbit);
-- }
-- else
-- {
-- __is.putback(__ch);
-- __is >> __re_x;
-- __x = complex<_Tp>(__re_x, _Tp(0));
-- }
-- return __is;
-- }
--
-- template<typename _Tp, typename _CharT, class _Traits>
-- basic_ostream<_CharT, _Traits>&
-- operator<<(basic_ostream<_CharT, _Traits>& __os, const complex<_Tp>& __x)
-- {
-- basic_ostringstream<_CharT, _Traits> __s;
-- __s.flags(__os.flags());
-- __s.imbue(__os.getloc());
-- __s.precision(__os.precision());
-- __s << '(' << __x.real() << ',' << __x.imag() << ')';
-- return __os << __s.str();
-- }
--
-- // Values
-- template<typename _Tp>
-- inline _Tp
-- real(const complex<_Tp>& __z)
-- { return __z.real(); }
--
-- template<typename _Tp>
-- inline _Tp
-- imag(const complex<_Tp>& __z)
-- { return __z.imag(); }
--
-- template<typename _Tp>
-- inline _Tp
-- abs(const complex<_Tp>& __z)
-- {
-- _Tp __x = __z.real();
-- _Tp __y = __z.imag();
-- const _Tp __s = max(abs(__x), abs(__y));
-- if (__s == _Tp(0)) // well ...
-- return __s;
-- __x /= __s;
-- __y /= __s;
-- return __s * sqrt(__x * __x + __y * __y);
-- }
--
-- template<typename _Tp>
-- inline _Tp
-- arg(const complex<_Tp>& __z)
-- { return atan2(__z.imag(), __z.real()); }
--
-- // 26.2.7/5: norm(__z) returns the squared magintude of __z.
-- // As defined, norm() is -not- a norm is the common mathematical
-- // sens used in numerics. The helper class _Norm_helper<> tries to
-- // distinguish between builtin floating point and the rest, so as
-- // to deliver an answer as close as possible to the real value.
-- template<bool>
-- struct _Norm_helper
-- {
-- template<typename _Tp>
-- static inline _Tp _S_do_it(const complex<_Tp>& __z)
-- {
-- const _Tp __x = __z.real();
-- const _Tp __y = __z.imag();
-- return __x * __x + __y * __y;
-- }
-- };
--
-- template<>
-- struct _Norm_helper<true>
-- {
-- template<typename _Tp>
-- static inline _Tp _S_do_it(const complex<_Tp>& __z)
-- {
-- _Tp __res = abs(__z);
-- return __res * __res;
-- }
-- };
--
-- //============= added from gcc 3.3 cpp_type_traits.h and renamed __is_floating_old
-- //
-- // Floating point types
-- //
-- template<typename _Tp>
-- struct __is_floating_old
-- {
-- enum
-- {
-- _M_type = 0
-- };
-- };
--
-- // three specializations (float, double and 'long double')
-- template<>
-- struct __is_floating_old<float>
-- {
-- enum
-- {
-- _M_type = 1
-- };
-- };
--
-- template<>
-- struct __is_floating_old<double>
-- {
-- enum
-- {
-- _M_type = 1
-- };
-- };
--
-- template<>
-- struct __is_floating_old<long double>
-- {
-- enum
-- {
-- _M_type = 1
-- };
-- };
--
--
-- //============== end cut and paste and rename __is_floating
--
-- template<typename _Tp>
-- inline _Tp
-- norm(const complex<_Tp>& __z)
-- {
-- return _Norm_helper<__is_floating_old<_Tp>::_M_type>::_S_do_it(__z);
-- }
--
-- template<typename _Tp>
-- inline complex<_Tp>
-- polar(const _Tp& __rho, const _Tp& __theta)
-- { return complex<_Tp>(__rho * cos(__theta), __rho * sin(__theta)); }
--
-- template<typename _Tp>
-- inline complex<_Tp>
-- conj(const complex<_Tp>& __z)
-- { return complex<_Tp>(__z.real(), -__z.imag()); }
--
-- // Transcendentals
-- template<typename _Tp>
-- inline complex<_Tp>
-- cos(const complex<_Tp>& __z)
-- {
-- const _Tp __x = __z.real();
-- const _Tp __y = __z.imag();
-- return complex<_Tp>(cos(__x) * cosh(__y), -sin(__x) * sinh(__y));
-- }
--
-- template<typename _Tp>
-- inline complex<_Tp>
-- cosh(const complex<_Tp>& __z)
-- {
-- const _Tp __x = __z.real();
-- const _Tp __y = __z.imag();
-- return complex<_Tp>(cosh(__x) * cos(__y), sinh(__x) * sin(__y));
-- }
--
-- template<typename _Tp>
-- inline complex<_Tp>
-- exp(const complex<_Tp>& __z)
-- { return polar(exp(__z.real()), __z.imag()); }
--
-- template<typename _Tp>
-- inline complex<_Tp>
-- log(const complex<_Tp>& __z)
-- { return complex<_Tp>(log(abs(__z)), arg(__z)); }
--
-- template<typename _Tp>
-- inline complex<_Tp>
-- log10(const complex<_Tp>& __z)
-- { return log(__z) / log(_Tp(10.0)); }
--
-- template<typename _Tp>
-- inline complex<_Tp>
-- sin(const complex<_Tp>& __z)
-- {
-- const _Tp __x = __z.real();
-- const _Tp __y = __z.imag();
-- return complex<_Tp>(sin(__x) * cosh(__y), cos(__x) * sinh(__y));
-- }
--
-- template<typename _Tp>
-- inline complex<_Tp>
-- sinh(const complex<_Tp>& __z)
-- {
-- const _Tp __x = __z.real();
-- const _Tp __y = __z.imag();
-- return complex<_Tp>(sinh(__x) * cos(__y), cosh(__x) * sin(__y));
-- }
--
-- template<typename _Tp>
-- complex<_Tp>
-- sqrt(const complex<_Tp>& __z)
-- {
-- _Tp __x = __z.real();
-- _Tp __y = __z.imag();
--
-- if (__x == _Tp(0))
-- {
-- _Tp __t = sqrt(abs(__y) / 2);
-- return complex<_Tp>(__t, __y < _Tp(0) ? __t=-__t : __t);
-- }
-- else
-- {
-- _Tp __t = sqrt(2 * (abs(__z) + abs(__x)));
-- _Tp __u = __t / 2;
-- return __x > _Tp(0)
-- ? complex<_Tp>(__u, __y / __t)
-- : complex<_Tp>(abs(__y) / __t, __y < _Tp(0) ? __u=-__u : __u);
-- }
-- }
--
-- template<typename _Tp>
-- inline complex<_Tp>
-- tan(const complex<_Tp>& __z)
-- {
-- return sin(__z) / cos(__z);
-- }
--
-- template<typename _Tp>
-- inline complex<_Tp>
-- tanh(const complex<_Tp>& __z)
-- {
-- return sinh(__z) / cosh(__z);
-- }
--
-- // Code from bits/cmath.cc, written by Gabriel Dos Reis
-- template<typename _Tp> inline complex<_Tp>
-- pow(const complex<_Tp>& __z, int __n)
-- {
-- complex<_Tp> __y = __n % 2 ? __z : complex<_Tp>(1);
-- complex<_Tp> __x = __z;
--
-- while (__n >>= 1)
-- {
-- __x = __x * __x;
-- if (__n % 2)
-- __y = __y * __x;
-- }
--
-- return __y;
--
-- }
--
--
-- template<typename _Tp, typename _Up>
-- inline complex<_Tp>
-- pow(const complex<_Tp>& __x, const _Up& __y)
-- {
-- return exp(__y * log(__x));
-- }
--
-- template<typename _Tp, typename _Up>
-- inline complex<_Tp>
-- pow(const _Up& __x, const complex<_Tp>& __y)
-- {
-- return exp(__y * log(__x));
-- }
--
-- template<typename _Tp>
-- inline complex<_Tp>
-- pow(const complex<_Tp>& __x, const complex<_Tp>& __y)
-- {
-- return exp(__y * log(__x));
-- }
--
-- template<typename _Tp>
-- inline complex<_Tp>
-- pow(const _Tp& __x, const complex<_Tp>& __y)
-- {
-- return exp(__y * log(__x));
-- }
--
-- // 26.2.3 complex specializations
-- // complex<float> specialization
-- template<> class complex<float>
-- {
-- public:
-- typedef float value_type;
--
-- complex(float = 0.0f, float = 0.0f);
--#ifdef _GLIBCPP_BUGGY_COMPLEX
-- complex(const complex& __z) : _M_value(__z._M_value) { }
--#endif
-- explicit complex(const complex<double>&);
-- explicit complex(const complex<long double>&);
--
-- float real() const;
-- float imag() const;
--
-- complex<float>& operator=(float);
-- complex<float>& operator+=(float);
-- complex<float>& operator-=(float);
-- complex<float>& operator*=(float);
-- complex<float>& operator/=(float);
--
-- // Let's the compiler synthetize the copy and assignment
-- // operator. It always does a pretty good job.
-- // complex& operator= (const complex&);
-- template<typename _Tp>
-- complex<float>&operator=(const complex<_Tp>&);
-- template<typename _Tp>
-- complex<float>& operator+=(const complex<_Tp>&);
-- template<class _Tp>
-- complex<float>& operator-=(const complex<_Tp>&);
-- template<class _Tp>
-- complex<float>& operator*=(const complex<_Tp>&);
-- template<class _Tp>
-- complex<float>&operator/=(const complex<_Tp>&);
--
-- private:
-- typedef __complex__ float _ComplexT;
-- _ComplexT _M_value;
--
-- complex(_ComplexT __z) : _M_value(__z) { }
--
-- friend class complex<double>;
-- friend class complex<long double>;
-- };
--
-- inline float
-- complex<float>::real() const
-- { return __real__ _M_value; }
--
-- inline float
-- complex<float>::imag() const
-- { return __imag__ _M_value; }
--
-- inline
-- complex<float>::complex(float r, float i)
-- {
-- __real__ _M_value = r;
-- __imag__ _M_value = i;
-- }
--
-- inline complex<float>&
-- complex<float>::operator=(float __f)
-- {
-- __real__ _M_value = __f;
-- __imag__ _M_value = 0.0f;
-- return *this;
-- }
--
-- inline complex<float>&
-- complex<float>::operator+=(float __f)
-- {
-- __real__ _M_value += __f;
-- return *this;
-- }
--
-- inline complex<float>&
-- complex<float>::operator-=(float __f)
-- {
-- __real__ _M_value -= __f;
-- return *this;
-- }
--
-- inline complex<float>&
-- complex<float>::operator*=(float __f)
-- {
-- _M_value *= __f;
-- return *this;
-- }
--
-- inline complex<float>&
-- complex<float>::operator/=(float __f)
-- {
-- _M_value /= __f;
-- return *this;
-- }
--
-- template<typename _Tp>
-- inline complex<float>&
-- complex<float>::operator=(const complex<_Tp>& __z)
-- {
-- __real__ _M_value = __z.real();
-- __imag__ _M_value = __z.imag();
-- return *this;
-- }
--
-- template<typename _Tp>
-- inline complex<float>&
-- complex<float>::operator+=(const complex<_Tp>& __z)
-- {
-- __real__ _M_value += __z.real();
-- __imag__ _M_value += __z.imag();
-- return *this;
-- }
--
-- template<typename _Tp>
-- inline complex<float>&
-- complex<float>::operator-=(const complex<_Tp>& __z)
-- {
-- __real__ _M_value -= __z.real();
-- __imag__ _M_value -= __z.imag();
-- return *this;
-- }
--
-- template<typename _Tp>
-- inline complex<float>&
-- complex<float>::operator*=(const complex<_Tp>& __z)
-- {
-- _ComplexT __t;
-- __real__ __t = __z.real();
-- __imag__ __t = __z.imag();
-- _M_value *= __t;
-- return *this;
-- }
--
-- template<typename _Tp>
-- inline complex<float>&
-- complex<float>::operator/=(const complex<_Tp>& __z)
-- {
-- _ComplexT __t;
-- __real__ __t = __z.real();
-- __imag__ __t = __z.imag();
-- _M_value /= __t;
-- return *this;
-- }
--
-- // 26.2.3 complex specializations
-- // complex<double> specialization
-- template<> class complex<double>
-- {
-- public:
-- typedef double value_type;
--
-- complex(double =0.0, double =0.0);
--#ifdef _GLIBCPP_BUGGY_COMPLEX
-- complex(const complex& __z) : _M_value(__z._M_value) { }
--#endif
-- complex(const complex<float>&);
-- explicit complex(const complex<long double>&);
--
-- double real() const;
-- double imag() const;
--
-- complex<double>& operator=(double);
-- complex<double>& operator+=(double);
-- complex<double>& operator-=(double);
-- complex<double>& operator*=(double);
-- complex<double>& operator/=(double);
--
-- // The compiler will synthetize this, efficiently.
-- // complex& operator= (const complex&);
-- template<typename _Tp>
-- complex<double>& operator=(const complex<_Tp>&);
-- template<typename _Tp>
-- complex<double>& operator+=(const complex<_Tp>&);
-- template<typename _Tp>
-- complex<double>& operator-=(const complex<_Tp>&);
-- template<typename _Tp>
-- complex<double>& operator*=(const complex<_Tp>&);
-- template<typename _Tp>
-- complex<double>& operator/=(const complex<_Tp>&);
--
-- private:
-- typedef __complex__ double _ComplexT;
-- _ComplexT _M_value;
--
-- complex(_ComplexT __z) : _M_value(__z) { }
--
-- friend class complex<float>;
-- friend class complex<long double>;
-- };
--
*** 357 LINES SKIPPED ***