git: 204bf4f79bb3 - main - math/py-umap-learn: New port: Uniform Manifold Approximation and Projection
- Go to: [ bottom of page ] [ top of archives ] [ this month ]
Date: Sat, 06 Aug 2022 17:29:42 UTC
The branch main has been updated by yuri:
URL: https://cgit.FreeBSD.org/ports/commit/?id=204bf4f79bb3dae6cf25004bcdde6a74d84fafd3
commit 204bf4f79bb3dae6cf25004bcdde6a74d84fafd3
Author: Yuri Victorovich <yuri@FreeBSD.org>
AuthorDate: 2022-08-06 17:10:03 +0000
Commit: Yuri Victorovich <yuri@FreeBSD.org>
CommitDate: 2022-08-06 17:25:33 +0000
math/py-umap-learn: New port: Uniform Manifold Approximation and Projection
---
math/Makefile | 1 +
math/py-umap-learn/Makefile | 24 ++++++++++++++++++++++++
math/py-umap-learn/distinfo | 3 +++
math/py-umap-learn/pkg-descr | 9 +++++++++
4 files changed, 37 insertions(+)
diff --git a/math/Makefile b/math/Makefile
index b81548a27218..39f6fafd12bd 100644
--- a/math/Makefile
+++ b/math/Makefile
@@ -984,6 +984,7 @@
SUBDIR += py-timple
SUBDIR += py-topologic
SUBDIR += py-triangle
+ SUBDIR += py-umap-learn
SUBDIR += py-uncertainties
SUBDIR += py-unyt
SUBDIR += py-vincenty
diff --git a/math/py-umap-learn/Makefile b/math/py-umap-learn/Makefile
new file mode 100644
index 000000000000..2b8aaa06ab1b
--- /dev/null
+++ b/math/py-umap-learn/Makefile
@@ -0,0 +1,24 @@
+PORTNAME= umap-learn
+DISTVERSION= 0.5.3
+CATEGORIES= math python
+MASTER_SITES= CHEESESHOP
+PKGNAMEPREFIX= ${PYTHON_PKGNAMEPREFIX}
+
+MAINTAINER= yuri@FreeBSD.org
+COMMENT= Uniform Manifold Approximation and Projection
+
+LICENSE= BSD3CLAUSE
+
+RUN_DEPENDS= ${PYTHON_PKGNAMEPREFIX}numba>=0.49:devel/py-numba@${PY_FLAVOR} \
+ ${PYNUMPY} \
+ ${PYTHON_PKGNAMEPREFIX}pynndescent>=0.5:math/py-pynndescent@${PY_FLAVOR} \
+ ${PYTHON_PKGNAMEPREFIX}scikit-learn>=0.22:science/py-scikit-learn@${PY_FLAVOR} \
+ ${PYTHON_PKGNAMEPREFIX}scipy>=1.0:science/py-scipy@${PY_FLAVOR} \
+ ${PYTHON_PKGNAMEPREFIX}tqdm>=3.4.0:misc/py-tqdm@${PY_FLAVOR}
+
+USES= python:3.6+
+USE_PYTHON= distutils autoplist pytest
+
+NO_ARCH= yes
+
+.include <bsd.port.mk>
diff --git a/math/py-umap-learn/distinfo b/math/py-umap-learn/distinfo
new file mode 100644
index 000000000000..b635e5ad4192
--- /dev/null
+++ b/math/py-umap-learn/distinfo
@@ -0,0 +1,3 @@
+TIMESTAMP = 1659803954
+SHA256 (umap-learn-0.5.3.tar.gz) = dbd57cb181c2b66d238acb5635697526bf24c798082daed0cf9b87f6a3a6c0c7
+SIZE (umap-learn-0.5.3.tar.gz) = 88193
diff --git a/math/py-umap-learn/pkg-descr b/math/py-umap-learn/pkg-descr
new file mode 100644
index 000000000000..b3f23e964533
--- /dev/null
+++ b/math/py-umap-learn/pkg-descr
@@ -0,0 +1,9 @@
+Uniform Manifold Approximation and Projection (UMAP) is a dimension reduction
+technique that can be used for visualisation similarly to t-SNE, but also for
+general non-linear dimension reduction. The algorithm is founded on three
+assumptions about the data:
+* The data is uniformly distributed on a Riemannian manifold;
+* The Riemannian metric is locally constant (or can be approximated as such);
+* The manifold is locally connected.
+
+WWW: https://github.com/lmcinnes/umap