

Getting Started with SEBSD HOWTO

Last update: Nov 29, 2005

This document is a general introduction about Security Enhanced BSD (SEBSD). It is
based on the experimental version of SEBSD, 20050624-6.0-SEBSD, and might be
also applied to the future FreeBSD 6.0 with MAC framework and SEBSD enabled.
The document is for people who want to start using or testing SEBSD. Some content
here is derived from "Getting Started with SELinux HOWTO" by Faye Coker for
SELinux. For more information about SEBSD and its latest status, see
http://www.trustedbsd.org/sebsd.html.

1. Introduction

1.1 SEBSD

SEBSD is a port of the SELinux Flask and Type Enforcement implementations to run
on top of the TrustedBSD MAC framework. SEBSD is occurring as part of an
extension to the DARPA CBOSS contract at NAI Labs, and provides access to NSA
FLASK and the Type Enforcement implementation as pluggable module on FreeBSD
5.0 or above.

The Flask architecture provides flexible support for a wide range of access control
policies by separating the policy enforcement from the policy decision. Its
implementation under Linux, SELinux, has achieved great success and been merged
into official Fedora and other popular Linux distributions. For more information about
Flask and SELinux, see http://www.nsa.gov/selinux.

1.2 Feedback

Any comments and suggestions on this document are welcome. Please email to
wuyanjun <at> gmail <dot> com.

1.3 Disclaimer

This document is a user guide only. The author will take no responsibility for any
damage cause by using it. We will try our best to update it and make it more correct.
Anyway, we strongly recommend you install SEBSD and configure it well on a test
machine before deploying it on a production server.

http://www.trustedbsd.org/sebsd.htmld
http://www.nsa.gov/selinux

--

2. Overview

This section will discuss the following matters: on which condition you might
consider SEBSD, some features provided by SEBSD, and several terms that will be
frequently used in subsequent sections.

2.1 When should you consider SEBSD?

If you are a BSD fan, and at the meantime you are curious about OS security, then
you might choose to use SEBSD as a starting point. It will provide you broad and
deep knowledge.

If you are an administrator maintaining a BSD server in a security-critical company,
and the server is used by multiple users and has high, complex security requirements,
you might consider SEBSD as the basis of your security management.

2.2 Features of SEBSD

Comparing to the traditional access control mechanisms such as DAC (Discretionary
Access Control) and Posix.1e Capabilities, SEBSD offers greater security for systems.
It provides fine-grained mandatory access control mechanisms together with flexible
configuration and management. Through IBAC(Identity Based Access Control),
RBAC(Role Based Access Control) and TE (Type Enforcement) models, users are
assigned predefined roles, files and processes belong to certain types. A user can
access a file or a process only if one of his/her roles has permission to access the type
of file/process.

This differs from regular Unix permission in that the user defined roles, or security
contexts they are placed in, have limited access to files and other resources, but in a
far more control fashion. For example, take a user's .rhosts file on a regular Unix
System. If the owner makes it world writable (by mistake or by Trojans), then anyone
can login and do lots of damage. Under SEBSD, you can control whether or not the
user has the ability to change the permissions on their .rhosts file, and also prevent
other people from writing to it even the owner has made it world writable.

A common question is how SEBSD permissions relate to standard Unix permissions.
When you do a certain operation, the Unix permissions are checked first. If they allow
your operation then SEBSD will check next and allow or deny as appropriate. But if
the Unix permissions don't let you do it, the requested operation stops there and
SEBSD checks will not be performed.

Another example is if there was an exploitable bug in /usr/bin/passwd which could
run chmod 666 /etc/master.passwd. SEBSD permissions would still prevent anyone
from inappropriately accessing the file.

2.3 Terminologies

The following terms will appear frequently in this document, and form the core
concepts SEBSD.

2.3.1 identity

An identity under SEBSD is not the same as the traditional Unix UID. They can
coexist together on the same system, but are independent and quite different from
each other. Identities under SEBSD stands for part of a security context which will
affect what domains can be entered, i.e. what essentially can be done. A SEBSD
identity and a standard Unix login may have the same textual representation (and in
most cases they do), however it is important to understand that they are two different
things. Running the su command does not change the user's identity under SEBSD.

Example:
A normal user with the login name wyj runs the “id –M” command (under SEBSD):

wyj@wyj_sebsd$ id -M
sebsd/wyj:user_r:user_t

The identity portion of the security context in this case is "wyj". Now if wyj has su'ed
to root and runs id, he will the security context is still wyj:user_r:user_t.

wyj@wyj_sebsd$ su -
Password:
root@wyj_sebsd# id -M
sebsd/wyj:user_r:user_t

So the identity remains the same, and has not changed to root. However, if identity
wyj has been granted access to enter the staff_r role and does so (with sebsd_newrole
command which will be covered later), and runs id command again, he will now see:

wyj@wyj_sebsd$ id -M
sebsd/wyj:staff_r:staff_t

So the identity remains the same but the role and domain (second and third fields
respectively) have changed. Maintaining the identity in this manner is useful where
user accountability is required. It is also crucial to system security in that the user
identity will determine what roles and domains can be used.

2.3.2 domain

Every process runs in a domain. A domain directly determines the permissions a
process has. A domain is basically a list of what processes can do, or what actions a
process can perform on different types. Think of a domain like a standard Unix uid.
Say root has a program and does a chmod 4777 on that program (making it setuid
root). Anyone on the system, even the nobody user, can run this program as root
thereby creating a security issue. With SEBSD however, if you have a process which
triggers a domain transition to a privileged domain, if the role of the process is not
authorized to enter a particular domain, then the program cannot be run.

Some examples of domains are sysadm_t which is the system administration domain,
staff_t which is the user domain with access to the sysadm_r role, and user_t which is
the general unprivileged user domain. init runs in the init_t domain, and named runs
in the named_t domain.

2.3.3 type

A type is assigned to an object and indicates what actions can be performed on this
object. The definitions for domain and type are the same, except domain applies to
processes while type applies to objects such as files, directories or sockets, etc.

2.3.4 role

A role determines what domains can be entered. A user is assigned several roles in
policy configuration files.

Example: In order to allow a user from the user_t domain (the unprivileged user
domain) to execute the passwd command, the following should be specified in the
relevant configuration file:
 role user_r types user_passwd_t

It means that a user in the user role (user_r) is allowed to enter the user_passwd_t
domain, i.e. he/she can run the passwd command.

2.3.5 security context

A security context has all the attributes that are associated with things like files,
directories, processes, sockets and so on. It is made up of the identity, role and domain
or type. You can check your own current security context by running “id –M” under
SEBSD.

wyj@wyj_sebsd$ id -M
sebsd/wyj:user_r:user_t

The prefix “sebsd” means this is a SEBSD label and the string after “/” is the SEBSD

security context.

There is a very important distinction that needs to be made clear here, between
domain and type, as both of them are in the third field, and it tends to cause a little
confusion later on if you do not understand it from the start.

Processes have a domain. When you check the security context of a process (for an
example, see the explanation of "transition" below), the final field is the domain such
as user_passwd_t (if you were running the passwd command).

Objects such as files, directories, sockets etc have types. When you use the ls -Z
command on a file for instance, the final field is the type, such as user_home_t for a
file created in the home directory of a user in the user_r role.

The security context of a file can vary depending on the domain that creates it. By
default, a new file or directory inherits the same type as its parent directory; however
you can have other choices through policies.

Example: User wyj creates a file named test in his directory. He then runs the
command ls -Z test and sees:

wyj@wyj_sebsd$ touch test
wyj@wyj_sebsd$ ls -Z test
sebsd/wyj:object_r:user_home_t test

He then creates a file in /tmp also called test, and runs the command ls -Z /tmp/test,
the result is:

wyj@wyj_sebsd$ cd /tmp/
wyj@wyj_sebsd$ touch test
wyj@wyj_sebsd$ ls -Z test
sebsd/wyj:object_r:user_tmp_t test

In the first example, the security context includes the type "user_home_t" which is the
default type for the home directory of an unprivileged user in the user_r role. After
running the second ls -Z command, you can see that the type is user_tmp_t which is
the default type that is used for files created by a user_t process, in a directory with a
tmp_t type.

2.3.6 transition

A transition decision also referred to as a labeling decision, determines which security
context will be assigned for a requested operation. There are two main types of
transition. Firstly, there is a transition of process domain which is used when you
execute a program of a specified type. Secondly, there is a transition of file type
happened when you create a file under a particular directory.

Example:
For the second type of transition (transition of file type), refer to the example give in
the "security context" section above. When running the ls -Z command you can see
what the file types are labelled as (i.e. user_home_t and user_tmp_t in the above
examples).

For transition of process domains, consider the following example. Run ssh as a non
privileged user, or more specifically, from the user_t domain (remember you can use
the id command to check your security context). Then run “ps -Z |grep ssh” and note
what is listed for ssh. Assuming user wyj does this, he will see:

wyj@wyj_sebsd$ ps -Z|grep ssh
sebsd/wyj:user_r:user_t 496 p0 R+ 0:00.00 grep ssh
sebsd/wyj:user_r:user_ssh_t 482 v2 I+ 0:00.03 ssh 192.168.0.5 -l wyj

At the last line of the output listing, the ssh process is being run in the user_ssh_t
domain because the executable is of type ssh_exec_t and the user_r has been granted
access to the user_ssh_t domain.

2.3.7 policy

Policies are a set of rules governing things such as the roles a user has access to;
which roles can enter which domains; and which domains can access which types
with what mode. You can edit your policy files according to how you want your
system set up.

Because the default location for SEBSD policy is /etc/security/sebsd/policy, and we
will use it frequently hereafter, let us take $POLICY_HOME to make it short.

3. Installation

The following instruction will use 20050624-6.0-SEBSD to explain how to install a
new SEBSD. It is available at http://www.trustedbsd.org/downloads. It is assumed
you know how to install a normal FreeBSD system, including packages, distributions
and ports, and how to configure, compile and boot a new SEBSD kernel. If you are
not familiar with that knowledge, see FreeBSD handbook for details.

3.1 Basic Installation Step

Here we assume you have the installation CD on hand. This CD will install the
complete operating system, including kernels, user applications, and complete kernel

http://www.trustedbsd.org/downloads

source code. As a common FreeBSD sysinstall interface, a series of menus will
prompt the user how to proceed.

a) At the main menu, select an installation method, typically, the standard installation

is adequate. The remainder of these instructions assumes the standard installation
option was selected.

b) The next menu displays the disk partition manager. As long as the installation
machine will be dedicated to SEBSD, allow the partition manager to use the entire
disk by selecting 'A'. Select 'Q' to exit the partition manager. The installation
program may print a warning that this creates a dedicated machine. It will proceed
to ask which boot manager to install; select 'BootMgr' to install the normal
FreeBSD boot manager on this hard disk.

Note: Take great care if you have multiple operating systems on the same disk
and you want to keep them live together with SEBSD. For the issue, you’d better
to ask experts for help unless you have enough experiences. What’s more,
remember the system should be installed on the primary partition as this is the
general requirements of BSD system.

c) The next menu will label the disk to create swap space and individual file systems.
Selecting 'A' will use the default values. Select 'Q' to proceed to the next menu.

d) The next menu selects the distributions to install. The 'Developer' option is
recommended. X Window support is not included on this installation CD, and may
be installed later. Likewise, the optional ports collection is not include on the
SEBSD installation CD.

e) On the next screen, Select CD/DVD from the installation media menu.
f) Confirm installation. WARNING: With the configuration recommended in these

instructions, all existing data on the hard disk will be destroyed!
g) SEBSD will be installed on the machine. Once complete, the installation program

will ask a series of questions to help configure the new system. Answer these
questions as appropriate.

Reboot the system when prompted. By default, the system will boot the MAC kernel
and load the SEBSD security module (with the default policy). The file systems have
not yet been labeled, and many warnings will be printed to the system console. If it is
necessary to boot the generic FreeBSD kernel (without the MAC framework),
comment out the following lines in /boot/loader.conf:

 kernel="MAC"
 sebsd_load="YES"

Alternatively, the kernel and modules to load may be selected from the FreeBSD boot
loader. Refer to the FreeBSD handbook for more information on the boot loader.

3.2 Modify and Load Security Policies

The system comes pre-installed with a sample policy, but local changes might be

required. The policy source is located in /etc/security/sebsd/policy and the compiled
(binary) version is installed in /etc/security/sebsd/policy/policy.bin by default. Only
the binary version is loaded by the SEBSD module at boot time. An alternate location
for the binary policy file may be specified at the boot loader or in /boot/loader.conf.
The boot loader uses a symbolic link "policy.bin" in the same directory as policy.17,
in case a different policy file version is necessary.

Since SEBSD uses the same policy language as SELinux, the SELinux report titled,
"Configuring the SELinux Policy", (available at the SELinux project web site:
http://www.nsa.gov/selinux/) can provide useful information. If you make changes to
the policy source, you must re-install the modified binary policy:

 cd /etc/security/sebsd/policy && make install

If changes were made to the policy, the modified version must be loaded into the
kernel. The /sbin/sebsd_loadpolicy program can be used instead of a reboot:

 /sbin/sebsd_loadpolicy /etc/security/sebsd/policy/policy.bin
or you can simply type “make load” to load the default policy file.

Note that policy.bin is installed by default as a symlink to another file. If you plan to
generate your own policy file then you might need to adjust this.

3.3 Label the File System

Labeling file system is to set a security context for each persistent (on-disk) object
(file, directory, etc). The security context is stored in the extended attribute. By default,
extended attribute support was enabled during the install, but the individual files were
not labeled. To label all file systems, login as root and run the following command:

 cd /etc/security/sebsd/policy && make relabel

It will take quite a few minutes according to the number of files on the disk.

3.4 Permissive Mode and Enforcing Mode

Reboot the machine, so that applications can use the file labels and will be started in
the correct domains. At this point, the machine will be running SEBSD with the
sample policy. The sample policy is only an example and must be customized.
Furthermore, the sample policy is not complete, so the system will print some access
control warnings. By default, the system is configured in the development mode, or
permissive mode; in this mode, access control failures are logged but not enforced. To
toggle between enforcing mode and permissive mode, you can use sysctl to set the
value of security.mac.sebsd.enforcing as follows:
To enable: sysctl security.mac.sebsd.enforcing=1
To disable: sysctl security.mac.sebsd.enforcing=0

Note that with the sample policy, only root running in the sysadm_r role is permitted
to toggle the enforcement state.

If you would like the machine to default to enforcing mode at boot time, you may
specify a default value for this sysctl in /etc/sysctl.conf. Uncomment the following
line at the end of the file:

 security.mac.sebsd.enforcing=1

There is also a useful switch for you to debug your policies. Turn on the verbose
functionality by the following command:
 sysctl security.mac.sebsd.verbose = 2 (or any positive integer larger than 1)
you will see many messages about SID assignment, file path and security context, etc.

4 Add a New Account

When the installation is completed, the thing you would like to do is to add a new
account. This section will introduce how to create a new user and assign him the roles
and default security context.

4.1 Create a New Account

Log in as root and you will see following message if you use the default policy:
Your default SEBSD context is root:sysadm_r:sysadm_t.
Do you want to choose a different one? [n]:

Here you need to choose the logging context for root. We will explain it later. Just
press enter and log in with the default context root:sysadm_r:sysadm_t. Only in this
context root can add a new user. Let us use “adduser” command to add a new user
called setest:

root@wyj_sebsd# adduser
Username: setest
Full name: sebsd test
Uid (Leave empty for default):
Login group [setest]:
Login group is setest. Invite setest into other groups? []:
Login class [default]:
Shell (sh csh tcsh bash nologin) [sh]:
Home directory [/home/setest]:
Use password-based authentication? [yes]:
Use an empty password? (yes/no) [no]:
Use a random password? (yes/no) [no]:

Enter password:
Enter password again:
Lock out the account after creation? [no]:
Username : setest
Password : *****
Full Name : sebsd test
Uid : 1001
Class :
Groups : setest
Home : /home/setest
Shell : /bin/sh
Locked : no
OK? (yes/no):yes

Now a new user is created successfully.

4.2 Assign Roles to User

We must assign roles to the new user. Here we expect he has at least user_r role. The
relevant configuration file is /etc/security/sebsd/policy/user. Open it with vi, add the
following line at the end of the file:

user setest roles { user_r };

It means the user setest is authorized to have the role user_r. If you want setest have
more roles like sysadm_r, you can add the following line instead:

user setest roles { user_r sysadm_r };

To apply the modification, run “make load” under /etc/security/sebsd/policy directory
by root with root:sysadm_r:sysadm_t context.

By default, a new user will have the role user_r, without necessarily specifying in
users file. However, on the following conditions you must explicitly specify it in the
configuration file:
1) the user has more roles than user_r;
2) the user is able to change his password.
3) have the SEBSD log explicitly contain the user name where applicable.

Next we will set the security context for setest.

4.3 Set Default Security Context for User

After adding setest in /etc/security/sebsd/policy/users, we need to assign the default
security context for user’s login session. The relevant configuration file is
appconfig/default_context. Open it and you will see a line like:

 system_r:local_login_t user_r:user_t

It means when a user logs in locally, the /bin/login program will run in local_login_t
domain, and will then assign user with user_r role and let the user enter user_t
domain.

If the line is like:

 system_r:local_login_t user_r:user_t staff_r:staff_t
It means the user is also authorized to enter staff_r role and staff_t domain.

There is another line like:

 system_r:sshd_t user_r:user_t staff_r:staff_t
It means any user that logs in through ssh will enter user_r:user_t or staff_r:staff_t.

Recall the message appears in Section 4.1. In /etc/security/sebsd/policy/users, there is
a line for root:

user root roles { staff_r sysadm_r ifdef(`direct_sysadm_daemon', `system_r') };
We can see root is authorized to have staff_r and sysadm_r roles, together with a
conditional role system_r (Here we will not introduce the conditional expression).
These two roles have the default types (specified in appconfig/default_type) staff_t
and sysadm_t respectively. Hence the root user has two security contexts to choose
when he logs in:

[1] root:sysadm_r:sysadm_t
[2] root:staff_r:staff_t

4.4 Label User’s Home Directory

After adding the setest user, we need to label the user’s home directory. If we forget to
do so, the user will not be able to login to his own home directory in enforcing mode.
The home directory for setest is /usr/home/setest. Use the following command to label
the files and sub directories under it:

setfmac –R sebsd/setest:object_r:user_home_t /usr/home/setest

The command recursively labels all the files and directories under /usr/home/setest
with security context setest:object_r:user_home_t. See setfmac(8) for detailed usage
of setfmac.

Sometimes a process needs to access a user’s home directory, but not to any files or
subdirectories below. hence we should label /usr/home/setest itself with the different
type, like the following:

setfmac sebsd/setest:object_r:user_home_dir_t /usr/home/setest

5 Choosing a Security Context

This section will introduce how user selects the security context and how to change
one to the other. We also show the different rights the user has when he associates
with the different security context.

The user with multiple roles authorized has two ways to choose his security context:
through log in or through sebsd_newrole utility.

Following the instruction of Section 4, let us create a new user called wyj. Add a line
to the /etc/security/sebsd/policy/users and assign wyj with two roles:

user wyj roles { user_r staff_r };
Remember to label wyj’s home directory as described in Section 4.4.

5.1 Choosing a Security Context When Log In

When the user wyj logs in, the following will prompt:

Your default SEBSD context is wyj:user_r:user_t.
Do you want to choose a different one? [n]: y

Press “y”, then you will see:

[1] wyj:user_r:user_t
[2] wyj:staff_r:staff_t
Enter number of choice: 1

Here wyj can choose one context to login. Suppose he choose 1 to log in, then run “id
–M”, he will see:

wyj@wyj_sebsd$ id -M
sebsd/wyj:user_r:user_t

5.2 Change Security Context Through sebsd_newrole

SEBSD provides a utility called sebsd_newrole, by which a user can execute his shell
with a new role, and then change to a new security context. The usage of
sebsd_newrole is:

sebsd_newrole -r role [-t type] [args]
For details see sebsd_newrole(1).

User can change his current role to another role in case both are authorized and the
role transition from the source to the destination is allowed.

For example, wyj logged in as wyj:user_r:user_t. Now he wants to change to
wyj:staff_r:staff_t. Run the following command:

wyj@wyj_sebsd$ sebsd_newrole -r staff_r -t staff_t
Authenticating wyj.
Password:
Executing default shell (/usr/local/bin/bash) with context wyj:staff_r:staff_t

After that, run “id –M”:

wyj@wyj_sebsd$ id -M
sebsd/wyj:staff_r:staff_t

The security context of wyj has changed to wyj:staff_r:staff_t.

Now assume wyj wants to change to wyj:sysadm_r:sysadm_t in which the sysadm_r is
not authorized to him. If he run the same command, he will see:

wyj@wyj_sebsd$ sebsd_newrole -r sysadm_r -t sysadm_t
Authenticating wyj.
Password:
Debug: error 9 (authentication error)
Error, incorrect password for wyj

The context transition fails.

5.3 Comparison of Rights in Different Roles

Then what’s the different in different roles? The answer is simple, different roles
means different rights. We will use an example to illustrate it.

Suppose root has two roles, staff_r and sysadm_r. If root logs in as the staff_r role and
enter /etc/security/sebsd/policy, then he runs “ls –Z”, he will see:

root@wyj_sebsd# ls -al
total 0
ls: .: Permission denied

He has no right to list the files in the directory.
Now he logs in again with sysadm_r, or by executing “sebsd_newrole –r sysadm_r –t
sysadm_t”, and then runs “ls –Z”, he will see all the files with their security contexts.
That’s because the type of /etc/security/sebsd/policy is policy_config_t, and only
sysadm_t domain can access it, while the staff_r cannot enter sysadm_t.

--

6 Add a New User Domain

To make it more clearly about the relations between user, role and domain, this

section will describe how to add a new role called second_r and the corresponding
domain second_t.

6.1 Editing Relevant Configuration Files

The first file to edit is domains/user.te. Add the following line to the file (either at the
top or bottom):

full_user_role(second)

Note there is a comment like:

if adding new user roles make sure you edit the in_user_role macro in
macros/user_macros.te to match

So we jump to macros/user_macros.te. After finding the place of in_user_role macro,
modify it to be:

undefine(‘in_user_role’)
define(‘in_user_role’, ‘
role user_r types $1;
role second_r types $1;
’)

Finally, set the default type for second_r in appconfig/default_type by adding the line:

 second_r:second_t

The macro full_user_role(second) declares the second_r, and also creates some related
types, such as second_home_t and second_home_dir_t that have been used in
previous section. The second_tmp_t is used to label newly created files in /tmp
directory by second_t domain. The second_tmmfs_t is used to label shared memory
created in tmpfs. And second_tty_device_t and second_devpts_t is used to label tty
devices and pseudo tty devices.

6.2 Test the New User Domain

Let us use setest to test our new user domain. Firstly, edit the file users and adding the
following line to assign setest only second_r role.

 user setest roles { second_r };

Then run “make load” to load the new policy. After that remember to label setest’s
home directory if you did not do it yet:

setfmac –R sebsd/setest:object_r:user_home_t /usr/home/setest
setfmac sebsd/setest:object_r:user_home_dir_t /usr/home/setest

But it should be noted some new files

Now setest can log in the system with second_r role. If he runs “id –M”, he will see
his current security context as follows:

setest@wyj_sebsd$ id –M
sebsd/setest:second_r:second_t

7 Explanation of SEBSD Log Message

You must have seen many log messages printed on the console. You can display them
again by running “dmesg” command. This section will explain the detailed meaning
of the log messages.

Example: The user wyj with wyj:user_r:user_t tried to edit /etc/master.passwd by vim.
The system got the following log:
avc: denied { read } for pid=530 comm=vim inode=1038362, mountpoint=/,
scontext=wyj:user_r:user_t tcontext=system_u:object_r:shadow_t tclass=file

“avc: denied” means the operation is refused. SEBSD can log both denied event and
grant event;
“{ read }” means the process tried to read the file. The contents of the brace { }
contains the operation or operations that are requested to be done on the object.;
“for pid＝530” is the PID of the process (vim process here);
“comm=vim” shows the command being executed (vim here);
“inode=1038362” is the inode number of the file to read (/etc/master.passwd here);
“mountpoint=/” shows the mount point of the file system that the target file lies on
(root directory of system here);
“scontext=“ shows the subject’s security context;
“tcontext=“ shows the security context of the target object;
“tclass=“ shows the security class of the target object (regular file here).

You can find more logs and analyze their means. These logs help the administrator to
improve their configurations and provide proper security policy.

--

8 Resources

The materials about SEBSD are scarce, but there will be more and more available as
SEBSD becomes popular.

8.1 Papers and Documents

You can find several papers and technical reports about TrustedBSD MAC framework
and SEBSD. And the paper titled “Security-Enhanced BSD” is recommended if you
already have some knowledge about SELinux.

8.2 Official Sites

FreeBSD: http://www.freebsd.org
TrustedBSD: http://www.trustedbsd.org
SELinux: http://www.nsa.gov/selinux

8.3 Mail Lists

trustedbsd-discuss@cyrus.watson.org is strongly recommended, where Robert Watson
and Scott Long will give detailed answers to your questions about SEBSD.

You can visit http://www.trustedbsd.org/mailinglists.html and select proper mail lists
about other components of trustedbsd to subscribe.

Also visit:
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/eresources.html#ERE
SOURCES-MAIL to subscribe more topics you are interested in.

http://www.freebsd.org/
http://www.trustedbsd.org/
http://www.nsa.gov/selinux
mailto:trustedbsd-discuss@cyrus.watson.org
http://www.trustedbsd.org/mailinglists.html
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/eresources.html#ERESOURCES-MAIL
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/eresources.html#ERESOURCES-MAIL

