
Progress Report 2 (GSOC ‘16)

The project now has been completely moved to this ​repository​.
Each scenario now has its own status report showing the
success/failure of each test and their respective description.
Comments regarding the current progress and suggestions can be
made ​here​.

Pending Scenarios

Path MTU Discovery
For this scenario, until now these are the conclusions to which
I have arrived at -

➢ FreeBSD ​TUN​ device does not support ​TSO​, which probably is
the reason that the receiver is not generating ​ICMP
(needfrag)​ message when an overloaded segment is sent.

➢ The test can be successful if I use remote mode with two
FreeBSD machines. I will be setting up another VM for this
purpose and will then be reporting about the further
progress. Leaving this for later since now there are more
important scenarios to consider.

Scenarios which require review

Socket Shutdown
All the tests and results related to this scenario are available
here​. All the tests for this scenario have failed. These are
some of the possible reasons which I have drawn regarding their
expected and observed behavior -

➢ After calling ​shutdown(4, SHUT_RD)​, ​read()​ should not be able
to run. This is indeed the observed behavior. However,
read()​ still returns ​0​, although I think ​-1​ should be the
appropriate return value. This is the log during the test
runtime -
tests/bsd/tcp/shutdown/shutdown­rd.pkt:18: runtime error in read

call: Expected result ­1 but got 0

https://github.com/shivrai/TCP-Regression-TestSuite
https://gist.github.com/shivrai/43f48a2005d814a5ce649ef40115860f
https://github.com/shivrai/TCP-IP-Regression-TestSuite/tree/master/shutdown

➢ After calling ​shutdown(4, SHUT_RD)​, if client writes some

data to the sender, the TCP stack should respond with a
RST​. However, FreeBSD in this case responds with a delayed
ACK​. This however is also the case with Linux, as it is
mentioned ​here​ and is justified by the similar test.
This is the log during the test runtime.

script packet: 0.360000 R 1:1(0)

actual packet: 0.367084 . 1:1(0) ack 1001 win 1008

Handling of incoming ICMP packets
All the tests and status for this scenario are available ​here​.
Currently I have successfully tested ​19 out of 56​ ICMP types.
For the implementation of the remaining types, I will have to
look into the source code for packetdrill (​icmp_packet.c​) and add
corresponding missing ICMP types. I am also currently looking
into finding a way of directly sending ICMP packets to the ​TUN
device and studying responses, which will ease the entire
testing process and I will finally make changes in the code for
all the successful types.

Current problems

I am currently not able to figure out what property is being
asserted by the following code snippet -

assert tcpi_reordering == 3

I think this is pointing to ​RFC4737​ but am not sure. It would be
very helpful if you could tell whether it is the appropriate
reference. Once this gets figured out, I will be able to
correctly write tests for all the remaining scenarios.

http://marc.info/?l=linux-netdev&m=105774722214242&w=2
https://github.com/shivrai/TCP-IP-Regression-TestSuite/tree/master/ICMP
https://tools.ietf.org/html/rfc4737

Timeline (Slight modification)

Start End Task

10 June 15 July All the remaining scenarios will be done.

16 July 31 July Attempt at completing the additional
scenarios mentioned in proposal.

1 Aug 11 Aug Attempt at patching packetdrill by adding a
new mode of testing in which remote host will
not need an instance of packetdrill running.

12 Aug 14 Aug Code review

15 Aug End of coding (soft)

23 Aug End of coding (hard)

The idea in which the new patch for packetdrill will be
developed was mentioned in the proposal, but I will be focussing
on this from 1 Aug when all the additional scenarios mentioned
in the proposal will be successfully completed.
I will also be trying to give a try into the other patch which I
mentioned in the proposal for supporting multiple concurrent
connections during this period itself.

