
Progress Report 3 (GSOC ‘16)

The project now has been completely moved to this repository.
Each scenario now has its own status report showing the
success/failure of each test and their respective description.
Comments regarding the current progress and suggestions can be
made here.

Scenarios Completed from Linux repo

Selective Acknowledgements

I have verified the support for selective acknowledgements
through the test for fast retransmit. However, a more rigorous
test will be done with assertions for tcp_info, but currently
using them is creating an issue which I have addressed later in
the report.

Fast Retransmit

One successful test for this scenario has been done. I don’t
think any variations can be brought in this scenario as the
concept itself is straightforward and easy to check.

Early Retransmit

I have currently made one successful test for this scenario,
however I am still going through RFC5827 as more study can be
done for this case (Plus I am enjoying it :P).

https://github.com/shivrai/TCP-Regression-TestSuite
https://gist.github.com/shivrai/43f48a2005d814a5ce649ef40115860f
https://github.com/shivrai/TCP-IP-Regression-TestSuite/blob/master/fast_retransmit/fr-4pkt-sack-bsd.pkt
https://tools.ietf.org/html/rfc5827

Additional scenarios from the proposal

Simultaneous Connection close

Summary
In this scenario, I check for the case when both the sender and
receiver simultaneously close their connections. The conclusions
which can be drawn are -

➢ After the client sends a FIN-ACK, the sender first has to
ACK before sending out a FIN after close()’ing the
connection.

➢ It is not at all possible for the sender to send out FIN
before ACK, even though both sender-receiver simultaneously
close their connections. This seems an odd behavior to me.

Urgent Pointer

I have figured out where in packetdrill is the code for urgent
pointer, will be using it to complete the 2 additional scenarios
mentioned in the proposal.

Current problems

Silly window avoidance

So since FreeBSD uses delayed acknowledgements (until now I have
encountered a max of 100 ms), I wanted to check if Nagle’s
algorithm is being used by the sender (just for curiosity). So
if it does, data will be queued in the sender’s buffer until ACK
is received from the other side. I tried checking this by
sending a small amount of data segment (less than MSS). However,
when we use PUSH, the data is instantly sent to the receiver’s
application, without being queued inside sender’s buffer. I was
wondering if there could be some way in which we can queue the
data in the sender’s buffer (and receiver’s as well) until it
reaches MSS, or if it receives an ACK from the other side. I can
also try switching to some other testing mechanism (say netperf)
for testing some specific scenarios.

https://github.com/shivrai/TCP-IP-Regression-TestSuite/blob/master/close/README.md
https://gist.github.com/shivrai/e394c99f50c33cbd405314e446cd727c#file-urg-log
https://github.com/shivrai/TCP-IP-Regression-TestSuite/blob/master/shutdown/shutdown-rd.pkt#L25

An interesting problem while working with assertions (Linux)

I was playing around with assertions for tcp_info on Linux, and I
came across an interesting observation for fast-retransmit. The
test is pretty simple, but something strange was happening here.
The MSS is specified to be 1000, however, on pushing segments of
length 1000, I got these errors -

script packet: 0.200699 . 1001:2001(1000) ack 1

actual packet: 0.200599 . 1001:3001(2000) ack 1 win 229

This seems strange as the actual packets are of size 2000.
Earlier when I used to test for PMTU discovery, I always used to
get errors when pushing data segments in multiples of MSS (Linux
inclusive, even in Linux I haven’t been successful in getting an
ICMP message notifying of the PMTU).
On the other hand, this test makes successful use of tcpi_retrans
option which fails for FreeBSD, as pointed out in the next
section.

Patch for packetdrill

So currently while using the following assertions, I was
initially getting some errors -

%{

assert tcpi_unacked == 5

assert tcpi_sacked == 0

assert tcpi_retrans == 1

}%

I have made a small attempt at getting my hands dirty with the
source code for code.c and tcp.h, and till now have arrived at
the following patch, though it doesn’t seem to work at the
moment as it can be seen in this log. The values of tcpi_sacked,
tcpi_unacked and tcpi_sacked always remain 0, which is strange.
Having a look at the error logs, it seems that only the
previously used values of tcp_info are available for testing, and
indeed on using them as assertions, the code just works fine. I

https://gist.github.com/shivrai/e394c99f50c33cbd405314e446cd727c#file-fr-4pkt-sack-linux-c
https://github.com/shivrai/TCP-IP-Regression-TestSuite/blob/master/tcp-info.patch
https://gist.github.com/shivrai/e394c99f50c33cbd405314e446cd727c#file-trace-py

also intend to add more options for tcp_info taking reference
from this document and making an effective use of these
assertions while testing. Also that since this document points
to making use of similar options in netperf, we can anytime turn
to it for testing these specific tcp_info options.

Timeline

Start End Task

 15 July All the remaining scenarios from Linux
repository are done once the above mentioned

observations gets resolved.

16 July 31 July Attempt at completing the additional scenarios
mentioned in proposal.

➢ Simultaneous connection close is done.
➢ Urgent Pointer will be done by tomorrow.
➢ Once I figure out a way of buffering data

instead of simply PUSH’ing, most of the
scenarios will be covered.

1 Aug 11 Aug Attempt at patching packetdrill by adding a
new mode of testing in which remote host will
not need an instance of packetdrill running.

12 Aug 14 Aug Code review

15 Aug End of coding (soft)

23 Aug End of coding (hard)

http://www.watson.org/~robert/freebsd/netperf/20050302-tcp_info-RELENG_5.diff

