
Protocol Scrubbing:
Network Security through Transparent Flow Modification

David Watson, Matthew Smart, G. Robert Malan, and Farnam Jahanian
University of Michigan

Department of Electrical Engineering and Computer Science
Ann Arbor, Michigan 48109-2122�

dwatson,mcsmart,rmalan,farnam � @eecs.umich.edu

Abstract

This paper describes the design and implementation
of protocol scrubbers. Protocol scrubbers are transpar-
ent, active interposition mechanisms for explicitly re-
moving network scans and attacks at various protocol
layers. The transport scrubber supports downstream
passive network-based intrusion detection systems by
converting ambiguous network flows into well-behaved
flows that are unequivocally interpreted by all down-
stream endpoints. The fingerprint scrubber restricts an
attacker’s ability to determine the operating system of
a protected host. As an example, this paper presents the
implementation of a TCP scrubber that eliminates inser-
tion and evasion attacks – attacks that use ambiguities to
subvert detection – on passive network-based intrusion
detection systems, while preserving high performance.
The TCP scrubber is based on a novel, simplifed state
machine that performs in a fast and scalable manner.
The fingerprint scrubber is built upon the TCP scrubber
and removes additional ambiguities from flows that can
reveal implementation-specific details about a host’s op-
erating system.

1. Introduction

As society grows increasingly dependent on the In-
ternet for commerce, banking, and mission critical ap-
plications, the ability to detect and neutralize network
attacks is becoming vitally important. Attackers can
use ambiguities in network protocol specifications to
deceive network security systems. Passive entities can
only notify administrators or active mechanisms after
attacks are detected. However, the response to this no-
tification may not be timely enough to withstand some
types of attacks – such as attacks on infrastructure con-

trol protocols. Active modification of network flows is
the only way to immediately detect or prevent these at-
tacks. This paper presents the design and implementa-
tion of protocol scrubbers – transparent, active interpo-
sition mechanisms for explicitly removing network at-
tacks at various protocol layers. We describe two in-
stances of protocol scrubbers in this paper. The trans-
port scrubber addresses the problem of insertion and
evasion attacks by removing protocol ambiguities, en-
abling downstream passive network-based intrusion de-
tection systems to operate with high assurance [5]. The
fingerprint scrubber prevents a remote user from detect-
ing the operating system of another host at the TCP/IP
layers by actively homogenizing flows [19].

The transport scrubber’s role is to convert ambigu-
ous network flows – flows that may be interpreted dif-
ferently at different endpoints – into well-behaved flows
that are interpreted identically by all downstream end-
points. As an example, this paper presents the imple-
mentation of a TCP scrubber that eliminates insertion
and evasion attacks against passive network-based in-
trusion detection systems. Insertion and evasion attacks
use ambiguities in protocol specifications to subvert de-
tection. This paper argues that passive network intru-
sion detection systems (NID systems) can only effec-
tively identify malicious flows when used in conjunc-
tion with an active interposition mechanism. Through
interposition, the transport scrubber can guarantee pro-
tocol invariants that enable downstream intrusion detec-
tion systems to work with confidence. Because the In-
ternet protocols are well described, correct implementa-
tions exchange packets with deterministic results. How-
ever, sophisticated attackers can leverage subtle differ-
ences in protocol implementations to wedge attacks past
the NID system’s detection mechanism by purposefully
creating ambiguous flows. In these attacks, the desti-
nation endpoint reconstructs a malicious interpretation,

whereas the passive NID system’s protocol stack inter-
prets the protocol as a benign exchange. Examples of
these ambiguities are IP fragment reconstruction and the
reassembly of overlapping out-of-order TCP byte se-
quences. The role of the transport scrubber is to pick one
interpretation of the protocols and to convert incoming
flows into a single representation that all endpoints will
universally interpret. The transport scrubber’s conver-
sion of ambiguous network flows into unequivocal inter-
pretations is analogous to that of network traffic shaping.
Shapers modify traffic around the edges of a network to
generate predictable utilization patterns within the net-
work. Similarly, the transport scrubber intercepts pro-
tocols at the edges of an interior network and modifies
them in such a way that their security attributes are pre-
dictable.

Differences in protocol implementations also allow
attackers to determine a remote host’s operating sys-
tem. The process of determining the identity of a host’s
operating system by analyzing packets from that host
is called TCP/IP stack fingerprinting. Fingerprinting
scans are often preludes to further attacks, and there-
fore we built the fingerprint scrubber to block the major-
ity of stack fingerprinting techniques in a general, fast,
and transparent manner. Freely available tools (such as
nmap [3] and queso [14]) exist to scan TCP/IP stacks
efficiently by quickly matching query results against a
database of known operating systems. The reason this is
called “fingerprinting” is therefore obvious; this process
is similar to identifying an unknown person by taking
his or her unique fingerprints and finding a match in a
database of known fingerprints. A malicious use of fin-
gerprinting techniques is to construct a database of IP
addresses and corresponding operating systems for an
entire network. When someone discovers a new exploit
for a specific operating system, it is simple for the at-
tacker to run the exploit against each corresponding host
matching that operating system. This makes it very easy
for an attacker to systematically install malicious code,
such as distributed denial of service tools, on many ma-
chines. Current fingerprinting techniques provide fine-
grained determination of an operating system. For ex-
ample, the current version of nmap has knowledge of 15
different versions of Linux. Also, almost every system
connected to the Internet is vulnerable to fingerprinting
including standard computers running the major oper-
ating systems, routers, switches, hubs, bridges, embed-
ded systems, printers, firewalls, web cameras, and even
some game consoles. Many of these systems, such as
routers, are important parts of the Internet infrastructure,
and compromised infrastructure is a more serious prob-
lem than compromised end hosts. Therefore a general
mechanism to protect any system is needed.

The main contributions of this work are:

� Identification of transport scrubbing: The paper
introduces the use of an active, interposed trans-
port scrubber for the conversion of ambiguous net-
work flows into well-behaved, unequivocally inter-
preted flows. We argue that the use of a trans-
port scrubber is essential for correct operation of
passive network-based intrusion detection systems.
The paper describes the use of transport scrubbers
to eliminate insertion and evasion attacks on NID
systems [12]. The concept of transport scrubbing
can easily be merged with existing firewall tech-
nologies to provide the significant security benefits
outlined in this paper.

� Design and implementation of TCP scrubber: The
novel design and efficient implementation of the
half-duplex TCP scrubber is presented. The cur-
rent implementation of the TCP scrubber exists as
a modified FreeBSD kernel [2]. This implementa-
tion is shown to scale with commercial stateful in-
spection firewalls and raw Unix-based IP forward-
ing routers. By keeping the design of the scrubber
general, we plan to migrate the implementation to
programmable networking hardware such as the In-
tel IXA architecture [13; 4].

� Design and implementation of fingerprint scrub-
ber: Building upon the TCP scrubber, we present
a tool to defeat TCP/IP stack fingerprinting. The
fingerprint scrubber is transparently interposed be-
tween the Internet and the network under protec-
tion. We show that the tool blocks the majority of
known stack fingerprinting techniques in a general,
fast, and transparent manner.

The remainder of this paper is organized as follows.
Section 2 places our work within the broader context of
related work. Section 3 describes the design, implemen-
tation and performance characteristics of our TCP trans-
port scrubber. Section 4 presents our tool for defeating
TCP/IP stack fingerprinting. Finally, Section 5 presents
our conclusions and plans for future work.

2. Related Work

Firewall technologies [1] are closely related to proto-
col scrubbers. They are both active interposition mech-
anisms – packets must physically travel through them
in order to continue towards their destinations – and
both operate at the ingress points of a network. Modern
firewalls primarily act as gate-keepers, utilizing filtering

techniques that range from simple header-based exam-
ination to sophisticated authentication schemes. How-
ever, due to performance reasons, once a firewall has
identified an authorized flow, packets are routed through
a fast-path and are not scrutinized further for attacks.
In contrast to firewalls, the protocol scrubber’s primary
function is to homogenize network flows, identifying
and removing attacks in real-time. The scrubbers are uti-
lized to remove attacks present within the protocols once
a firewall has authorized a flow’s access. As such, scrub-
bing technology can easily be added to existing firewall
technologies to significantly enhance network security.

Intrusion Detection Systems (ID systems) [8; 15] are
also closely related to protocol scrubbers. Network-
based Intrusion Detection Systems (NID systems) are
implemented as passive network monitors that recon-
struct networking flows and monitor protocol events
through eavesdropping techniques [24; 16; 11; 18]. As
passive observers, NID systems have a vantage point
problem [10] when reconstructing the semantics of pass-
ing network flows. This vulnerability can be exploited
by sophisticated network attacks that understand the in-
herent schism between the protocol’s destination and an
intermediary observer [12]. As active participants in a
flow’s behavior, the protocol scrubber removes these at-
tacks, and can function as a fail-closed real-time NID
system that can sever or modify malicious flows.

Fingerprinting scans may be preludes to futher at-
tacks. A NID system will be able to detect and log
such scans, but the fingerprint scrubber actively re-
moves them. Various tools are available to secure a
single machine against operating system fingerprinting.
The TCP/IP traffic logger iplog [7] detects fingerprint
scans and sends out a packet designed to confuse the re-
sults. Other tools and operating system modifications
simply use the kernel TCP state to drop certain scan
types. None of these tools, however, can be used to pro-
tect an entire network of heterogeneous systems. In ad-
dition, these methods fail to protect networks that are
not under single administrative control, unlike the fin-
gerprint scrubber.

3. Transport Scrubber

Network-based intrusion detection systems are based
on the idea that packets observed on a network can be
used to predict the behavior of the intended end host.
While this idea holds for well-behaved network flows,
it fails to account for easily created ambiguities that can
render the NID system useless. Attackers can use the
disparity between reconstruction at the end-host and the
passive NID system to attack the end host without de-
tection. The TCP scrubber is an active mechanism that

explicitly removes ambiguities from external network
flows, enabling downstream NID systems to correctly
predict the end-host response to these flows. By en-
forcing protocol invariants on the downstream flows, the
TCP scrubber eliminates TCP insertion and evasion at-
tacks against NID systems that can render them useless.
Utilizing a novel protocol-based approach in conjunc-
tion with an in-kernel implementation, the TCP scrub-
ber provides high performance as well as enforcement
of flow invariants (the TCP scrubber only reconstructs
the incoming half of the connection). By keeping a sig-
nificantly smaller amount of state, the scrubber is also
able to scale to tens of thousands of concurrent connec-
tions with throughput performance that is comparable to
commercial stateful inspection firewalls and raw Unix-
based IP forwarding routers. This section describes the
overall design and implementation of the TCP scrubber
and provides a comprehensive performance profile using
both macro and microbenchmarks.

3.1. TCP Ambiguities and ID Evasion

Sophisticated attacks can utilize protocol ambigui-
ties between a network intrusion detection system and
an end-host to slip past the watching NID system com-
pletely undetected. Network ID systems rely on their
ability to correctly predict the effect of observed packets
on an end-host system in order to be useful. In [12],
Ptacek and Newsham describe a class of attacks that
leave NID systems wide open to subversion. We borrow
their description of the two main categories of these at-
tacks: insertion attacks, where the NID system accepts
a packet that the end host rejects; and evasion attacks,
where the NID system rejects a packet that the end host
accepts.

Figure 1 provides a simple example of how differ-
ences in the reconstruction of a TCP stream can result in
two different interpretations, one benign and the other
malicious. In this simple example an attacker is trying
to log into an end host as root, while fooling the NID
system into thinking that it is connecting as a regular
user. The attacker takes advantage of the fact that the end
host and the NID system reconstruct overlapping TCP
sequences differently. In Figure 1a the attacker sends
a data sequence to the end host with a hole at the be-
ginning (represented by the question mark). Since TCP
is a reliable byte-stream service that delivers data to the
application layer in order, both the end-host and NID
system must wait until that hole is filled before proceed-
ing [21]. However, unbeknownst to the NID system –
but not the wily attacker – the end host deals with over-
lapping sequences of bytes differently than the NID sys-
tem. In Figure 1b when the attacker resends the data

ES R g r u b?

ES R g r u b?

End Host
"?SER grub"

NID system

(a) Host and NID system after attacker sends a
hole.

"USER root"

U ES R

U ES R r o o t
End Host

g r u b
NID system

(b) Attacker filling in the hole and confusing the
NID system.

"?SER grub"
TCP Scrubber

(c) Scrubber enforces single interpretation.

U S E R r o o t"USER root" "USER root"
TCP Scrubber

(d) Attacker filling in the hole and sending new
data.

Figure 1. Example of ambiguity of transport layer protocol implementation differences between
an interposed agent (NID system) and an end host.

with the hole filled, but with a different username of the
same length, the difference in implementation choice be-
tween the two systems allows the attack to dupe the NID
system. Since a correct TCP implementation would al-
ways send the same data upon retransmission, it is not
mandated in the specification as to which set of bytes
the endpoint should keep. In this example, the end host
chose to keep the new sequence of bytes that came in
the second packet, whereas the NID system kept the
first sequence of bytes. Neither is more correct than the
other; just the fact that there is ambiguity in the imple-
mentation of the networking stacks allows sophisticated
attacks to succeed.

To address this problem, we have created the TCP
scrubber. Specifically, the scrubber provides the invari-
ants that NID systems need for confident flow recon-
struction and end-host behavior prediction. For exam-
ple, the scrubber stores unacknowledged data from the
TCP sequence space. When any unacknowledged data
is retransmitted, the original data is copied to prevent
possible ambiguity. When acknowledged, this data is
thrown away and is removed from any subsequent pack-
ets. Specifically, Figures 1c and 1d demonstrate how the
active protocol scrubber interposed between the attacker
and the downstream systems eliminates the ambiguity.
By picking a single way to resolve the TCP reconstruc-
tion – in this case the scrubber simply throws away the
data after a hole – both the downstream NID system and
end host both see the attacker logging in as root.

In addition to the handling of overlapping TCP seg-
ments, there are many other ambiguities in the imple-
mentation of the TCP/IP stack [12]. To begin with, the

handling of IP fragments and their reconstruction varies
by implementation. Similar variations are seen with the
reconstruction of TCP streams. End hosts deal differ-
ently with respect to IP options and malformed headers.
They vary in their response to relatively new TCP header
options such as PAWS [21]. Moreover, there are van-
tage point problems that passive NID systems encounter
such as TTL-based routing attacks and TCP creation and
tear-down issues. The large number of ambiguities with
their exponential permutations of possible end-host re-
constructions make it impractical for NID systems to
model all possible interpretations at the end-host. They
must pick some subset, generally a single interpretation,
to evaluate in real-time. For this reason it is impractical
to adequately address the problem within the context of
a passive NID system.

3.2. TCP Scrubber Design and Implementation

The TCP scrubber converts external network flows –
sequences of network packets that may be ambiguously
interpreted by different end-host networking stacks –
into homogenized flows that have unequivocal interpre-
tations, thereby removing TCP insertion and evasion
attacks. While TCP/IP implementations vary signifi-
cantly in many respects, correct implementations inter-
pret well-behaved flows in the same manner. The pro-
tocol scrubber’s job is to codify what consists of well-
behaved protocol behavior and to convert external net-
work flows to this standard. To describe all aspects of
a well-behaved TCP/IP protocol stack is impractical in
a paper of this length, however we will illustrate this

approach by detailing its application to the TCP byte
stream reassembly process. TCP reassembly is the most
difficult aspect of the TCP/IP stack and is crucial to the
correct operation of NID systems. Note, however, that
we address more ambiguites of the TCP/IP stack when
we discuss the fingerprint scrubber in Section 4.

The TCP scrubber’s approach to converting ambigu-
ous TCP streams into unequivocal, well-behaved flows
lies in the middle of a wide spectrum of solutions. This
spectrum contains stateless filters at one end and full
transport-level proxies – with a considerable amount of
state – at the other. Stateless filters can handle sim-
ple ambiguities such as non-standard usage of TCP/IP
header fields with little overhead, however they are in-
capable of converting a stateful protocol, such as TCP,
into a non-ambiguous stream. Full transport-layer prox-
ies lie at the other end of the spectrum, and can convert
all ambiguities into a single well-behaved flow. How-
ever, the cost of constructing and maintaining two full
TCP state machines – scheduling timer events, round-
trip time estimation, window size calculations, etc. – for
each network flow restricts performance and scalability.
The TCP scrubber’s approach to converting ambiguous
TCP streams into well-behaved flows attempts to bal-
ance the performance of stateless solutions with the se-
curity of a full transport-layer proxy. Specifically, the
TCP scrubber maintains a small amount of state for each
connection but leaves the bulk of the TCP processing
and state maintenance to the end hosts. Moreover, the
TCP scrubber only maintains data state for the half of
the TCP connection originating at the external source.
Even for flows originating within a protected network
there is generally a clear notion of which endpoints are
more sensitive and need protection; if a situation arises
that needs bidirectional scrubbing, it can be configured
in the scrubber. With this compromise between a state-
less and stateful design, the TCP scrubber removes am-
biguities in TCP stream reassembly with performance
comparable to stateless approaches.

To illustrate the design of the TCP scrubber we com-
pare it to a full transport layer proxy. TIS Firewall
Toolkit’s plug-gw proxy is one example of a transport
proxy [22]. It is a user-level application that listens to a
service port waiting for connections. When a new con-
nection from a client is established, a second connection
is created from the proxy to the server. The transport
proxy’s only role is to blindly read and copy data from
one connection to the other. In this manner, the transport
proxy has fully obscured any ambiguities an attacker
may have inserted into their data stream by forcing a
single interpretation of the byte stream. This unequivo-
cal interpretation of the byte stream is sent downstream
to the server and accompanying network ID systems for

Table 1. Throughput for a single exter-
nal connection to an internal host (Mbps,�����	�

% at 99% CI).

IP Forwarding Scrubbing Plug Proxy
83.84 82.87 82.71

reconstruction. However, this approach has serious costs
associated with providing TCP processing for both sets
of connections.

Unlike a transport layer proxy, the TCP scrubber
leaves the bulk of the TCP processing to the end points.
For example, it does not generate retransmissions, per-
form round trip time estimation, or any timer-based pro-
cessing; everything is driven by events generated by the
end hosts. The TCP scrubber performs two main tasks:
it maintains the current state of the connection and keeps
a copy of the byte stream that has been sent by the exter-
nal host but not acknowledged by the internal receiver.
In this way it can make sure that the byte stream seen
downstream is always consistent – it modifies or throws
away any packets that could lead to inconsistencies.

In addition to a novel protocol processing design, the
TCP scrubber’s in-kernel implementation provides for
even greater performance advantages over a user-space
transport proxy. Currently, the TCP scrubber is imple-
mented within the FreeBSD 2.2.7 kernel’s networking
stack – a derivative of the BSD 4.4 code [25].

3.3. TCP Scrubber Performance

This section presents the results from a series of ex-
periments that profile the TCP scrubber’s performance
characteristics. They show that, in general, the current
implementation of the TCP scrubber can match the per-
formance of both commercial stateful inspection fire-
walls and raw Unix-based IP forwarding routers when
used in networks of up to 500 Mbit per second. For
all of the experiments, the interposed machine that ran
the TCP scrubbing kernel, the IP forwarding kernel, and
the TIS FWTK plug-gw proxy was the same: a 300
MHz Pentium II CPU, 128 megabytes main memory,
and two Intel EtherExpress Pro 10/100B Ethernet (fxp
device driver) cards. The TCP scrubbing kernel was
used to generate the scrubber’s statistics. An unmodi-
fied FreeBSD 2.2.7 kernel was used for the IP forward-
ing numbers. Finally, a modified 2.2.7 kernel was used
as a substrate for the plug-gw experiments.

Several experiments were undertaken to determine
the maximum sustainable bandwidth for the TCP scrub-
ber. The results in Table 1 provide a baseline measure-

Table 2. Latency of TCP/IP forwarding and
TCP Scrubbing (in microseconds).

Forwarding Type Mean Std Dev
IP Forwarding 8.00 2.91

TCP Scrub (1 byte payload) 13.19 3.38
TCP Scrub (
����� byte payload) 31.85 5.72

10.0.0/24

Untrusted Clients

10.0.1/24

Trusted Servers

S

D

Figure 2. Experimental apparatus for mea-
suring the protocol scrubber’s implemen-
tation.

ment of the maximum TCP throughput for a single con-
nection. This throughput was measured using the Net-
perf benchmark [9]. Three machines were used for the
test; all were connected through a 100 Mbps Ethernet
switch. The performance of all three forwarding mecha-
nisms were comparable – the networking bandwidth was
clearly the first-order bottleneck. In the absence of larger
capacity networking resources, we undertook a series of
microbenchmarks to pinpoint the TCP scrubber’s maxi-
mum throughput. These microbenchmarks measured the
amount of time it took for a packet to complete the ker-
nel’s ip input routine. For an IP forwarding kernel,
the time spent in ip input corresponds to the amount
of time needed to do IP processing and forwarding, in-
cluding queuing at the outbound link-level device (Eth-
ernet). For the TCP scrubber it represents the time to
scrub the packet and queue it on the outbound link-level
device. Numbers were not gathered for the plug-proxy
due to difficulty in matching incoming packets bound
for one socket buffer to the outgoing packets from an-
other. Table 2 shows the results from this experiment.
From these numbers it is possible to calculate the opti-
mal sustained throughput (excluding interrupt handling
overhead) of both the IP forwarding and TCP scrubber.
For scrubbing a stream of TCP packets with full-sized
data payloads, the current implementation’s ceiling on
our test hardware is 366Mbps. We believe that with op-
timizations and fewer data copies we could increase this
ceiling to 891Mbps (13.19 usec latency for scrubbing
1460 byte data payloads).

The next set of experiments show that the TCP scrub-
ber does not have a negative impact on the perfor-

mance characteristics of well-behaved TCP streams. We
show this by measuring the sustainable client-server
connections per second (similar to transactions) from
a set of external client machines to a set of internal
server machines. Specifically, an external set of cus-
tom web clients made identical fetches to an internal set
of Apache web servers. The clients repeatedly fetched
1K byte pages from the servers, stressing the connec-
tion setup and teardown process. Figure 2 shows the
experimental configuration used in these experiments.
The server’s ��� � � � ��� ��� network is comprised of an In-
tel Express 10/100 Ethernet switch, whereas the client’s��� � � � ��� ��� network is an Intel Express 10/100 Ethernet
hub. The experiments were measured using a promiscu-
ous mechanism attached to the client-side hub. The TCP
scrubber, IP forwarding router, and plug-gw proxy all
ran on the � machine. For a second set of experiments, a
dummynet router was used as machine � [17]. All ten
machines were equipped identically to the TCP scrub-
ber described above. The clients and servers all ran a
modified FreeBSD 2.2.7 kernel that was compiled with
a large maxusers constant.

Figure 3a shows the number of sustained connec-
tions per second measured for the TCP scrubber, the IP
forwarding router, and the user-space plug-gw proxy.
The pairs of lines in the graph represent the 99% con-
fidence intervals for the mean sustainable connections
per second. The results are twofold: the TCP scrub-
ber’s performance is comparable, even better than the
raw IP forwarding kernel, and the user-level proxy’s
performance is extremely low compared to the two in-
kernel implementations. The first result is a somewhat
surprising; however, when looking closely at the data
it can be explained by buffering at the TCP scrubber.
By buffering the incoming TCP connections, the TCP
scrubber shapes the traffic that the servers see, effec-
tively smoothing the request streams so that they are
more easily handled at the receivers. These results only
apply with very short-lived bursty traffic; the TCP scrub-
ber’s performance would decrease relative to IP for-
warding when scrubbing long-lived flows. However, this
decrease would be relatively small on low-bandwidth
networks (100Mbps) as shown in Table 1. The second
result is not a surprise – we expected the plug-proxy to
be slow. The original plug-gw code was modified so
that it did no logging and no DNS resolutions, which
resulted in a large performance increase. The proxy’s
kernel was also modified so that a large number of pro-
cesses could be accommodated. A custom user-space
proxy optimized for speed would certainly do better (the
plug-gw proxy forks a child for each incoming con-
nection). However, the multiple data copies and context
switching will always resign any user-space implemen-

0 100 200 300 400
Number of concurrent clients

0

500

1000

1500

2000

2500

R
eq

ue
st

s
se

rv
ic

ed
 p

er
 s

ec
on

d

IP Forwarding
TCP/IP Scrubbing
User space proxy

(a) Connections per second with no artificial loss.

0 2 4 6 8 10
Packets loss (percentage)

0

500

1000

1500

2000

2500

R
eq

ue
st

s
se

rv
ic

ed
 p

er
 s

ec
on

d

IP Fowarding
Transport Scrubbing

(b) Connections per second with 480 clients and
varied artificial loss.

Figure 3. TCP scrubber scalability results.

tation to significantly worse performance than the two
in-kernel approaches [6; 20].

Finally, we conducted a set of experiments to de-
termine the effects of a lossy link between the exter-
nal clients and the interposed machine. In these experi-
ments, the number of web clients was fixed at 480, while
artificial packet loss was forced on each network flow by
a dummynet router, labeled � in Figure 2. The results
of this experiment are shown in Figure 3b. The verti-
cal axis represents the number of requests serviced per
second; the horizontal axis represents the proportion of
bidirectional packet loss randomly imposed by the dum-
mynet router. The pairs of lines represent the 99% con-
fidence intervals for the mean sustained connections per
second. The main result from this experiment is that the
TCP scrubbed flows behave comparably to the raw IP
forwarded flows.

To put these results in perspective it is useful to com-
pare them with the performance of a fast commercial
firewall. CheckPoint reports in a performance white pa-
per that the peak throughput for their FireWall-1 product
on a dual 167 MHz UltraSparc with four 100 Mbps Eth-
ernet adapters (200 Mbps on each side) is 89.75 Mbps
[23]. While it is difficult to accurately compare the re-
sults from separate performance experiments, the TCP
scrubber’s performance is clearly as good as current fire-
wall technology.

4. Fingerprint Scrubber

We created a second protocol scrubber to remove
TCP/IP fingerprinting scans as a transparent, active in-
terposition mechanism. While fingerprinting does not
pose an immediate threat, it is a precursor to further at-

tacks. We based the fingerprint scrubber on the TCP
scrubber to leverage the performance of the in-kernel
implementation and the architecture of the TCP state
reassembly. The scrubber removes further ambiguities
from the TCP and IP protocol layers to defeat attempts
at scanning a host for operating system fingerprints.

The most complete and widely used TCP/IP finger-
printing tool today is nmap. It uses a database of over
380 fingerprints to match TCP/IP stacks to a specific op-
erating system or hardware platform. This database in-
cludes commercial operating systems, routers, switches,
and many other systems. Any system that speaks
TCP/IP is potentially in the database, which is updated
frequently. Nmap is free to download and is easy to use.
For these reasons, we are going to restrict our talk of
existing fingerprinting tools to nmap.

Nmap fingerprints a system in three steps. First, it
performs a port scan to find a set of open and closed TCP
and UDP ports. Second, it generates specially formed
packets, sends them to the remote host, and listens for
responses. Third, it uses the results from the tests to find
a matching entry in its database of fingerprints.

Nmap uses a set of nine tests to make its choice of
operating system. A test consists of one or more pack-
ets and the responses received. Eight of nmap’s tests
are targeted at the TCP protocol and one is targeted at
the UDP protocol. The TCP tests are the most important
because TCP implementations vary significantly. Nmap
looks at the order of TCP options, the pattern of initial
sequence numbers, IP-level flags such as the don’t frag-
ment bit, the TCP flags such as RST, the advertised win-
dow size, as well as other ambiguities. For more details,
including the specific options set in the test packets, re-
fer to [3].

TCP Sequence Prediction:
Class=truly random
Difficulty=9999999 (Good luck!)

Remote operating system guess:
Linux 2.0.35-37

(a) Web server running Linux.

TCP Sequence Prediction:
Class=trivial time dependency
Difficulty=1 (Trivial joke)

Remote operating system guess:
Xerox DocuPrint N40

(b) Shared printer.

Figure 4. Output of an nmap scan against
a web server running Linux and a shared
printer.

Figure 4 is an example of the output of nmap when
scanning our EECS department’s web server, www.
eecs.umich.edu, and one of our department’s print-
ers. The TCP sequence prediction result comes from
nmap’s determination of how a host increments its ini-
tial sequence number for each TCP connection. Many
commercial operating systems use a random, positive
increment, but simpler systems tend to use fixed incre-
ments or increments based on the time between connec-
tion attempts.

While nmap contains a lot of functionality and does a
good job of performing fine-grained fingerprinting, there
are other methods for fingerprinting remote machines.
For example, various timing-related scans could deter-
mine whether a host implements TCP Tahoe or TCP
Reno by imitating packet loss and watching recovery
behavior. Also, a persistent person could also use meth-
ods such as social engineering or application-level tech-
niques to determine a host’s operating system. Such
techniques are outside the scope of this work.

In this section we discuss the goals and intended use
of the scrubber as well as its design and implementation.
We demonstrate the scrubber blocks known fingerprint-
ing scans in a general, transparent manner. By trans-
parent we mean that the active modification of flows is
accomplished without requiring the fingerprint scrubber
to have explicit knowledge about fingerprinting scans or
end hosts’ TCP/IP stack implementations. We also show
that the performance is comparable to that of a standard
IP forwarding gateway.

4.1. Goals and Intended Use of The Fingerprint
Scrubber

The goal of the fingerprint scrubber is to block known
stack fingerprinting techniques in a general, fast, and
transparent manner. The tool should be general enough
to block classes of scans, not just specific scans by
known fingerprinting tools. The scrubber must not intro-
duce much latency and must be able to handle many con-
current TCP connections. Also, the fingerprint scrubber
must not cause any noticeable performance or behav-
ioral differences in end hosts. For example, it is de-
sirable to have a minimal effect on TCP’s congestion
control mechanisms by not delaying or dropping pack-
ets unnecessarily.

We intend for the fingerprint scrubber to be placed
in front of a set of systems with only one connection
to a larger network. We expect that a fingerprint scrub-
ber would be most appropriately implemented in a gate-
way machine from a LAN of heterogenous systems (i.e.
Windows, Solaris, MacOS, printers, switches) to a larger
corporate or campus network. A logical place for such a
system would be as part of an existing firewall. Another
use would be to put a scrubber in front of the control
connections of routers. Because packets traveling to and
from a host must travel through the scrubber, the net-
work under protection must be restricted to having one
connection to the outside world.

4.2. Fingerprint Scrubber Design and Imple-
mentation

To meet our goals, the fingerprint scrubber is based
on the TCP scrubber described earlier and operates at the
IP and TCP layers to cover a wide range of known and
potential fingerprinting scans. The TCP scrubber pro-
vides quick and scalable reassembly of TCP flows and
enforcement of the standard TCP three-way handshake
(3WHS). Instead of using the TCP scrubber, we could
have simply implemented a few techniques discussed in
the following sections to defeat nmap. However, the
goal of this work is to stay ahead of those developing
fingerprinting tools. By making the scrubber operate at
a generic level for both IP and TCP, we feel we have
raised the bar sufficiently high.

4.2.1. IP Scrubbing

In addition to the TCP ambiguities we discussed when
talking about the TCP scrubber, there are IP-level ambi-
guities that facilitate fingerprinting. IP-level ambiguities
arise mainly in IP header flags and fragment reassembly
algorithms and make it easier to fingerprint an operating

system. We can easily modify the IP header flags to re-
move these ambiguities without restricting functionality.
This involves little work in the scrubber, but does require
adjustment of the header checksum. To defeat IP-level
insertion and evasion attacks, we are forced to reassem-
ble the fragments ourself. This requires keeping state
in the scrubber to store the waiting fragments. Once a
completed IP datagram is formed, it may require addi-
tional processing to be re-fragmented on the way out the
interface.

4.2.2. ICMP Scrubbing

As with the IP layer, ICMP messages also contain am-
biguities that can be used for fingerprinting. We only
modify ICMP messages returning from the trusted side
back to the untrusted side because fingerprinting relies
on ICMP responses and not requests. Specifically, we
modify ICMP error messages and rate limit all outgoing
ICMP messages.

4.2.3. TCP Scrubbing

Even though a significant number of fingerprinting at-
tacks take place at the TCP level, the majority of them
are removed by the TCP protocol scrubber. The TCP
scrubber provides quick and scalable reassembly of
flows and enforces the standard TCP 3WHS. This allows
the fingerprint scrubber to block TCP scans that don’t
begin with a 3WHS. In fact, the first step in fingerprint-
ing a system is typically to run a port scan to determine
open and closed ports. Stealthy, meaning difficult to de-
tect, techniques for port scanning don’t perform a 3WHS
and are therefore blocked. While this defeats a signifi-
cant number of fingerprinting attempts, there are others
that must be addressed by the fingerprint scrubber.

One such scan involves examining TCP options, a
significant source of fingerprinting information. Differ-
ent operating systems will return the same TCP options
in different orders. Sometimes this order is enough to
identifiy an operating system. We did not want to dis-
allow certain options because some of them aid in the
performance of TCP (i.e. SACK) yet are not widely de-
ployed. Therefore we restricted our modifications to re-
ordering the options within the TCP header. We simply
provide a canonical ordering of the TCP options known
to us. Unknown options are included after all known op-
tions. The handling of unknown options and orderding
can be configured by an administrator.

We also defeat attempts at predicting TCP sequence
numbers by modifying the normal sequence number of
new TCP connections. The fingerprint scrubber stores
a random number when a new connection is initiated.
Each TCP segment for the connection traveling from

the trusted interface to the untrusted interface has its se-
quence number incremented by this value. Each seg-
ment for the connection traveling in the opposite direc-
tion has its acknowledgment number decremented by
this value.

4.3. Evaluation of Fingerprint Scrubber

This section presents results from a set of experi-
ments to determine the validity and throughput of the
fingerprint scrubber. They show that our current imple-
mentation blocks known fingerprint scan attempts and
can match the performance of a plain IP forwarding
gateway on the same hardware. The experiments were
conducted using a set of kernels with different finger-
print scrubbing options enabled for comparison. The
scrubber and end hosts each had 500 MHz Pentium III
CPUs and 256 megabytes of main memory. The end
hosts each had one 3Com 3c905B Fast Etherlink XL
10/100BaseTX Ethernet card (xl device driver). The
gateway had two Intel EtherExpress Pro 10/100B Ether-
net cards (fxp device driver). The network was config-
ured as shown in Figure 2.

4.3.1. Defeating Fingerprint Scans

To verify that our fingerprint scrubber did indeed defeat
known scan attempts, we interposed our gateway in front
of a set of machines running different operating systems.
The operating systems we ran scans against under con-
trolled conditions in our lab were FreeBSD 2.2.8, Solaris
2.7 x86, Windows NT 4.0 SP 3, and Linux 2.2.12. We
also ran scans against a number of popular web sites,
and campus workstations, servers, and printers.
Nmap was consistently able to determine all of the

host operating systems without the fingerprint scrubber
interposed. However, it was completely unable to make
even a close guess with the fingerprint scrubber inter-
posed. In fact, it wasn’t able to distinguish much about
the hosts at all. For example, without the scrubber nmap
was able to accurately identify a FreeBSD 2.2.8 system
in our lab. With the scrubber nmap guessed 14 different
operating systems from three vendors. Each guess was
wrong.

The two main components that aid in blocking nmap
are the enforcement of a three-way handshake for TCP
and the reordering of TCP options. Many of nmap’s
scans work by sending probes without the SYN flag set
so they are discarded right away. Similarly, operating
systems vary greatly in the order that they return TCP
options. Therefore nmap suffers from a large loss in
available information.

We intend this tool to be general enough to block new
scans. We believe that the inclusion of IP header flag

Table 3. Throughput for a single untrusted
host to a trusted host using TCP (Mbps,�

2.5% at 99% CI).

IP Forwarding 87.06
Fingerprint Scrubbing 86.86

Fingerprint Scrub. + Frag. Reas. 87.00

Table 4. Throughput for a single trusted
host to an untrusted host using TCP
(Mbps,

�
2.5% at 99% CI).

IP Forwarding 87.06
Fingerprint Scrubbing 86.79

Fingerprint Scrub. + Frag. Reas. 86.84

normalization and IP fragment reassembly aid in that
goal even though we do not know of any existing tool
that exploits such differences.

4.3.2. Throughput

We measured both the throughput from the trusted side
out to the untrusted side and from the untrusted side into
the trusted side using the Netperf benchmark [9]. This
was to take into account our asymmetric filtering of the
traffic. We ran experiments for TCP traffic to show the
affect of a bulk TCP transfer and for UDP to exercise
the fragment reassembly code. We used three kernels
on the gateway machine to test different functionality
of the fingerprint scrubber. The IP forwarding kernel is
the unmodified FreeBSD kernel, which we use as our
baseline for comparison. The fingerprint scrubbing ker-
nel includes the TCP options reordering, IP header flag
normalization, ICMP modifications, and TCP sequence
number modification but not IP fragment reassembly.
The last kernel is the full fingerprint scrubber with frag-
ment reassembly code turned on.

Table 3 shows the TCP bulk transfer results for an un-
trusted host connecting to a trusted host. Table 4 shows
the results for a trusted host connecting to an untrusted
host. The first result is that both directions show the
same throughput. The second, and more important re-
sult, is that even when all of the fingerprint scrubber’s
functionality is enabled we are seeing a throughput al-
most exactly that of the plain IP forwarding. The band-
width of the link is obviously the critical factor, therefore
we would like to run these experiments again on a faster
network.

We ran the UDP experiment with the IP forward-

ing kernel and the fingerprint scrubbing kernel with IP
fragment reassembly. Again, we measured both the un-
trusted to trusted direction and vice versa. To measure
the affects of fragmentation, we ran the test at varying
sizes up to the MTU of the Ethernet link and above. Note
that 1472 bytes is the maximum UDP data payload that
can be transmitted since the UDP plus IP headers add
an additional 28 bytes to get up to the 1500 byte MTU
of the link. The 2048 byte test corresponds to two frag-
ments and the 8192 byte test corresponds to five frag-
ments. At a size of 64 bytes, the scrubber spends most
of its time handling device interrupts.

Table 5 shows the UDP transfer results for an un-
trusted host connecting to a trusted host. Table 6 shows
the results for a trusted host connecting to an untrusted
host. Once again both directions show the same through-
put. We also see that the throughput of the fingerprint
scrubber with IP fragment reassembly is almost exactly
that of the plain IP forwarding. This is even true in the
case of the 8192 byte test where the fragments must be
reassembled at the gateway and then re-fragmented be-
fore being sent out.

5. Conclusion

This paper presented the design and implementation
of protocol scrubbers, which are active interposed mech-
anisms for transparently removing attacks from proto-
col layers in real-time. The key contributions of this
work are: the identification of transport scrubbing as
a mechanism that enables passive NID systems to op-
erate correctly, the design and implementation of the
high performance half-duplex TCP/IP scrubber, and the
creation of a TCP/IP stack fingerprint scrubber. The
transport scrubber converts ambiguous network flows
into well-behaved flows that are interpreted identically
at all downstream endpoints. While the security com-
munity has examined application proxies, the concept
of removing transport level attacks through a transport
scrubber has not been previously introduced. The fin-
gerprint scrubber removes clues about the identity of an
end host’s operating system to successfully and com-
pletely blocks known scans. Because of its general de-
sign, it should also be effective against any evolution-
ary enhancements to fingerprint scanners. By protect-
ing networks against scans we block the first step in an
attacker’s assault, increasing the security of a heteroge-
neous network.

Acknowledgments

The Intel Corporation provided support for this work
through a generous equipment donation and gift. This

Table 5. Throughput for a single untrusted host to a trusted host using UDP (Mbps,
�

2.5% at
99% CI).

Forwarding Type 64 bytes 1472 bytes 2048 bytes 8192 bytes
IP Forwarding 14.39 89.39 92.76 90.11

Fingerprint Scrubbing + Frag. Reas. 14.48 89.35 92.76 90.11

Table 6. Throughput for a single trusted host to an untrusted host using UDP (Mbps,
�

2.5% at
99% CI).

Forwarding Type 64 bytes 1472 bytes 2048 bytes 8192 bytes
IP Forwarding 14.39 89.39 92.76 90.11

Fingerprint Scrubbing + Frag. Reas. 14.40 89.37 92.76 90.12

work was also supported in part by a research grant from
the Defense Advanced Research Projects Agency, mon-
itored by the U.S. Air Force Research Laboratory under
Grant F30602-99-1-0527.

References

[1] D. B. Chapman and E. D. Zwicky. Building Internet
Firewalls. O’Reily and Associates, Inc., 1995.

[2] FreeBSD Homepage. http://freebsd.org.
[3] Fyodor. Remote OS detection via TCP/IP stack fin-

gerprinting. http://www.insecure.org/nmap/
nmap-fingerprinting-article.html, Octo-
ber 1998.

[4] Intel Internet Exchange Architecture. http://
developer.intel.com/design/IXA/.

[5] G. R. Malan, D. Watson, F. Jahanian, and P. Howell.
Transport and Application Protocol Scrubbing. In Pro-
ceedings of the IEEE INFOCOMM 2000 Conference,
Tel Aviv, Israel, March 2000.

[6] D. Maltz and P. Bhagwat. TCP Splicing for Application
Layer Proxy Performance. Technical Report RC 21139,
IBM Research Division, March 1998.

[7] R. McCabe. Iplog. http://ojnk.sourceforge.
net/.

[8] B. Mukherjee, L. T. Heberlein, and K. N. Levitt. Net-
work Intrusion Detection. IEEE Network, 8(3):26–41,
May and June 1994.

[9] Netperf: A Network Performance Benchmark. http:
//www.netperf.org/.

[10] V. Paxson. Automated Packet Trace Analysis of TCP
Implementations. In Proceedings of ACM SIGCOMM
’97, Cannes, France, September 1997.

[11] V. Paxson. Bro: A System for Detecting Network In-
truders in Real-Time. In Proceedings of the 7th USENIX
Security Symposium, San Antonio, Texas, January 1998.

[12] T. H. Ptacek and T. N. Newsham. Insertion, Evasion,
and Denial of Service: Eluding Network Intrusion De-
tection. Originally Secure Networks, Inc., now avail-

able as a white paper at the Network Associates Inc.,
http://www.nai.com/, January 1998.

[13] D. Putzolu, S. Bakshi, S. Yadav, and R. Yavatkar.
The Phoenix Framework: A Practical Architecture
for Programmable Networks. IEEE Communications,
38(3):160–165, March 2000.

[14] Queso Homepage. http://www.apostols.org/
projectz/queso/.

[15] M. J. Ranum. Intrusion Detection: Challenges and
Myths. Network Flight Recorder, Inc. whitepaper at
http://www.nfr.com/, 1998.

[16] M. J. Ranum, K. Landfield, M. Stolarchuk,
M. Sienkiewicz, A. Lambeth, and E. Wall. Imple-
menting a Generalized Tool for Network Monitoring.
In Proceedings of the Eleventh Systems Administration
Conference (LISA ’97), San Diego, CA, October 1997.

[17] L. Rizzo. Dummynet: a simple approach to the evalua-
tion of network protocols. ACM Computer Communica-
tion Review, January 1997.

[18] I. S. Services. RealSecure ��� . http://www.iss.
net/prod/rs.html.

[19] M. Smart, G. R. Malan, and F. Jahanian. Defeating
TCP/IP Stack Fingerprinting. In Proceedings of 9th
USENIX Security Symposium, Denver, Colorado, Au-
gust 2000.

[20] O. Spatscheck, J. S. Hansen, J. H. Hartman, and L. L. Pe-
terson. Optimizing TCP Forwarder Performance. Tech-
nical Report TR98-01, Dept. of Computer Science, Uni-
versity of Arizona, February 1998.

[21] W. R. Stevens. TCP/IP Illustrated, Volume 1: The Pro-
tocols. Addison-Wesley, 1994.

[22] T. I. Systems. TIS Firewall Toolkit. ftp://ftp.
tis.com/pub/firewalls/toolkit.

[23] C. P. S. Technologies. FireWall-1. http://www.
checkpoint.com.

[24] G. B. White, E. A. Fisch, and U. W. Pooch. Cooperat-
ing Security Managers: A Peer-Based Intrusion Detec-
tion System. IEEE Network, 10(1):20–23, January and
February 1996.

[25] G. R. Wright and W. R. Stevens. TCP/IP Illustrated,
Volume 2: The Implementation. Addison-Wesley, 1995.

