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1 Introduction

It is not uncommon to encounter trigonometric functions of large argument. Consider a simple

spring problem, under no damping conditions, the motion can be described by a simple equation:

u (t ) = u 0 cos(ωt )+ v0 sin(ωt )

where u (t ) is the displacement from the equilibrium position, u 0 is the initial displacement, v0 is the

initial velocity. ω the natural frequency of the system, which is given by
p

k/M , where k is the spring

constant and M is the mass. Then as the time t goes on toward infinity, the calculation involves a

large argument.

For a given large argument x (in radians), one can always reduce it to a y in the interval [−π,π] so

that sin(x ) = sin(y ) and cos(x ) = cos(y ), because radian trigonometric functions have period 2π. This

process is called argument reduction, It is the first step in computing trigonometric functions. In

mathematical terminology, y is equal to x − 2kπwhere k is the nearest integer to x/(2π).

Although the description of argument reduction is simple, its implementation is a challenge in floating-

point arithmetic, especially when x is huge. The main difficulty is in obtaining full accuracy in y . The

expression

y = x − 2kπ

must be computed in fixed point arithmetic with precision up to the exponent range of x , if one

wishes to evaluate trigonometric functions accurately, say to within 1 ULP (unit in the last place, see

[ref 7] for a detailed definition).

For example, if x = 10200, then k is an integer of around 200 digits wide, and more than 200 digits of π

after the decimal are required in the computation.

When the argument is large, most early [floating-point] software writers did not attempt to perform

argument reduction precisely. Instead they returned junk, or 0.0, or an error message. As a result

many users (and some implementors) have formed the impression that obtaining the correct func-

tion value for large inputs is simply impossible. That is why the current AT&T System V Release 4

still requires an error message be signaled and the result be 0.0 for any trigonometric functions when

the argument is huge. That restriction is unnecessary. The correct answer can be computed quite

efficiently.

It is often argued that being concerned about large arguments is unnecessary, because sophisticated

users simply know better than to compute with large angles. It is our contention that this position is

suboptimal, because:
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1. It places an unnecessary burden on the user.

2. The consequences of producing incorrect (inaccurate) answers may be catastrophic; many

people assume that computers can do arithmetic very well. While numerical analysts know

better, not all programmers are numerical analysts, nor should they be.

3. It is a vendors responsibility to provide answers that are as correct as possible.

One approach to argument reduction which has been taken by some computer industry vendors to

solve the problem was the introduction of the concept of machine PI, i.e., use a finite approximated

value of π to replace the π in the process of argument reduction. This approach simplifies the imple-

mentation, and preserves trigonometric identities (ref[1]). The problem is that there is no standard

choice of the precision of machine PI, which means the value of a trigonometric function is machine

dependent as well as precision dependent. Current commercial vendors of math coprocessors (like

the Intel x87 and Motorola 68882) use a 66 bit PI for their trigonometric functions, which is adequate

for IEEE double (53 bits) or double extended (64 bits) floating-point arithmetic, but insufficient for

quadruple precision (113 bits).

Around 1982, a way of implementing the infinitely precise pi argument reduction was found indepen-

dently by Bob Corbett at UC Berkeley (ref [2]) and the team of Mary H. Payne and Robert N. Hanek at

Digital Equipment Corporation (ref [3]). Both had implemented the precise argument reduction on

a VAX, the former wrote the assembly code in the UC Berkeley release 4.3bsd, the latter in the VMS

Fortran library.

Although the method has been known for ten years, it is relatively difficult to implement, which has

resulted in the technique being relatively obscure. Many contemporary computing systems still de-

liver a wide variety of results for large arguments. Some simply return error messages! Below is a table

of sin(x ) and cos(x ), for x = 1022 on various current computing systems:

Note that many computing systems return 0.0 or an error message when x is large. The worst behavior

that the author has come across was on the Casio fx-8100. It produces a fatal error computing sin(x )

when x > 26.

In this article, a brief description of the method is presented as well as some implementation notes

on a portable argument reduction program for IEEE double precision machines (ref[4]).
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Table 1: sin(x ) and cos(x ) for x = 1022 radians.*

sin(x ) cos(x ) notes

correct answer -0.852200849... 0.523214785...

VAX(VMS,g or h format) -0.852200849... 0.523214785...

HP 28S,48SX -0.852200849... 0.523214785...

hp 20-s -0.852200849... 0.523214785...

sparc (default) -0.852200849... 0.523214785...

sparc (special**) -0.65365288.... 0.75679449.... 66 bits PI

sparc (special**) 0.87402806.... 0.48587544.... 53 bits PI

hp 25 -0.944145338 -0.329529334

HP 700 0.0 0.0

HP 375,425t (4.3BSD) -0.653652882 0.756794497

sun3,NeXt -0.6536528816.. 0.7567944967.. 66 bits PI

hp 15c 0.7931056786 -0.6090840522 13 decimal PI

IBM RS/6000 AIX 3005 -0.852200850 0.523214785

IBM 3090/600S-VF AIX 370 0.0 0.0

IBX C/370 0.0 0.0

IBM PC:

Borland Turbo C 2.0 4.67734e-240 5.97245e-287

Borland Turbo Pascal 0.0 0.0

Zortech C++Demo Com. -0.462613 0.88656

Digitalk Smalltalk/V 0.46261304 -0.8865603

Derive 2.08, 150 dig. -0.852200849767 0.523214785395

Trilogy 0.0 1.0

Microsoft GWBasic 0.0 1.0

LaserGo GoScript v3 0.0 0.0

Sharp EL5806 -0.090748172 0.42009155

Stardent 1520 0.874028061 0.485875445

Stardent 3040 0.0 1.0

TRS-80 M100 0.0 0.0

SGI something NaN NaN(*** )

DECstation 3100 NaN NaN

casio (e.g. fx-8100) Error Error

SHARP EL-531A Error Error

TI 34,68,95 Error Error
* Disclaimer: The values listed in this table were contributed by various net volunteers (reader of

numeric-interest@validgh.com). These are not the official views of the listed computer system

vendors, Sun Microsystems, or of anyone else for that matter.

** Special code was employed to change the value of π to a machine PI (53 or 66 bits

approximation); all other features of the algorithm and environment remained the same.

*** NaN stands for Not-a-Number, which is used for undefined result like 0.0/0.0.

LATEX ed by Derek O’Connor, September 3, 2006 3



2. Mathematical Background

2 Mathematical Background

2.1 Argument Reduction

Instead of reducing the argument to [−π,π] as mentioned above, it is more common to reduce it to

[−π/4,π/4]. Given x , write

x = k (π/2)+ r, (1)

where k is an integer, and |r | ≤π/4. Let n be the last two bits of k , i.e., n = k mod 4, then we have

Table 2:

n sin(x ) cos(x ) sin(x )/cos(x )

0 sin(r ) cos(r ) sin(r )/cos(r )

1 cos(r ) −sin(r ) −cos(r )/sin(r )

2 −sin(r ) −cos(r ) sin(r )/cos(r )

3 −cos(r ) sin(r ) −cos(r )/sin(r )

[This is a blank equation to preserve the original equation numbers. There is no equation (2) in the original.] (2)

The computation of sin(x ) is thus replaced by the computation of sin(r ) and cos(r ) on the primary

interval [−π/4,π/4]. In this primary interval, sin(r ) and cos(r ) can be approximated accurately by

polynomial or rational functions. Readers who are interested in such approximations should consult

(ref[5]).

2.2 Formulas for k and r

Multiplying (1) by the constant 2/π, we have

x (2/π) = k + r · (2/π). (3)

Since |r | ≤π/4, r · (2/π)≤ 0.5. That is to say, if

y = x · (2/π) (4)

then

k = [y ] (5)

where [·] denotes rounded to nearest integer, and

f = y −k (6)

r = f · (π/2) (7)

Note that formulas (4) to (7) cannot be used directly in floating-point arithmetic, especially when x

has large exponent. The rounding error in (2/π)will be magnified tremendously after the subtraction

(6), making the subsequent calculation meaningless.
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2.3 How small could f be?

From here on, we will focus on IEEE double precision arithmetic (53 significant bits) for specificity.

In order to compute f accurately, we need to carry enough bits of 2/π in (4) so that y has enough

precision after the binary point to guarantee a full 53 significant bit of its fraction part f . Since π is a

transcendental number, it is possible that x ·(2/π)may be arbitrarily close to an integer (i.e., f may be

arbitrarily small). If f is as tiny as 2−1000, then 1000 more bits of 2/πmust be kept in storage. To keep

the number of bits of 2/π to minimum, we would like to determine a priori the lower bound of f .

To answer this question, Prof. W. Kahan of UC Berkeley, using the continued fraction related to π,

has devised an algorithm to search all floating-point numbers in working precision that are close to

a multiple of π/2 (ref [6]). In 1983, Stuart McDonald, a graduate student working with Prof. Kahan

adapted the algorithm into a C program.

By running the Kahan-McDonald program for IEEE double precision arithmetic, we locate the x that

is closest to a multiple of π/2:

x = 6381956970095103 ∗2797

= 5.31937264832654141671 . . . e + 255

and (4) becomes

y = 4 · (some integer)+ 1.+ 2.983942503748063. . . e − 19

Thus

f = 2.983942503748063. . . e − 19

r = f ·π/2= 4.687165924254624. . . e − 19

In order words, in IEEE double precision arithmetic, exhaustive search finds a lower bound for f :

|f | ≥ 2.983942503748063. . . e − 19

> 2−62. (8)

So in fixed point arithmetic, there are at most 61 leading zeros in f .

2.4 How many bits of 2/π do we need to store?

Let’s consider a hypothetical worst scenario. Suppose there is an x with maximum exponent 1023

(i.e., 21024 > x × 21023) such that the fractional part f associated with x is the minimum one in (8). In

this case, if we want some extra guard bits (say 7 guard bit) for f , then y must be accurate to

61(leading zeros) + 53 (non-zero significant bits) + 7 (extra guard bits)

= 121 bits.

Therefore, together with the width of x ’s exponent, 2/πmust contain

1023+ 121= 1144 bits. (9)
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x52 . . . x1x0 970 zeros

1144 bits   2/π

1144 bits  of x52 . 2/π

x

1144 bits  of x0 . 2/π

1023 bits 121 bits

Figure 1 : How many bits of 2/π do we need to store?

2.5 Avoid Unnecessary Computation

From 2.1[???] , we need only f and the last two bits of k for the computation of a trigonometric

function. Therefore, one doesn’t need to compute the full precision of k .

For large x (x ≥ 252), let M denote the number of trailing zeros before the binary point (i.e., x =N ∗2M

for some odd integer N ). We break 2/π into three pieces

2/π = A + B +C (10)

where

A = the first (M − 2) bits of 2/π after binary point,

B = the (M − 1) t h bit thru (M + 173) t h bit of 2/π,

C = from the (M + 174) t h bit of 2/π to the rest.

It is easy to see that x ·A = 4N for some integer N , which will be discarded, and |x ·C | < 2−121, which

is too tiny to affect the accuracy in f because of (8). Thus in IEEE double arithmetic, y = x · (2/π)may

be replaced by y = x · B.

x (53) bits M zeros

A (M - 1)  bits

x*A = 4N

x

x x  B

Needed info

B (175)  bits C (the rest)

x*C (too tiny)
+

2 bits + 121 bits after binary point

Figure 2 : Avoid Unnecessary Computation
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3 The computation of x · B

The analysis in section 2.5 took the precaution that y may be close to an integer. In reality, this is

rare. One does not need that many bits of B in the normal situation. Thus one may begin with a B

that has fewer bits, say 96 bits, and proceed to compute y , k and f . We then check whether f suffers

cancellation. If it does, then we repeat the computation with more bits in B.

As for the computation of x ·B , one can simulate multi-precision arithmetic. There are many ways to

accomplish this. We outline one approach below, and leave the details to the reader.

Break up B in several 24-bit pieces. If one begins with a 96 bit B , then there will be four pieces. Denote

them to be

B =b1+b2+b3+b4

and break up x in three 24-bit pieces:

x = x1+x2+x3.

Then x · B =

b1 + b2 + b3 + b4

× x1 + x2 + x3

x3 ·b1 + x3 ·b2 + x3 ·b3 + x3 ·b4

x2 ·b1 + x2 ·b2 + x2 ·b3 + x2 ·b4

x1 ·b1 + x1 ·b2 + x1 ·b3 + x1 ·b4

y1 + y2 + y3 + y4 + y5 + y6

Here yi ’s are double precision numbers and are exact, because each product b i · x j is only a 48-

significant bit number and the sums fit exactly in 50 significant bits.

The final step is to sum up yi to determine the nearest integer k and the fraction f . Here is one algo-

rithm:

For i from 1 to 6 yi = (yi mod 4) (remove unwanted integer parts)

y = y1+(y2+(y3+(y4+(y5+ y6) ) ) ) (in that order)

t = (((( (y1 − y )+ y2)+ y3)+ y4)+ y5)+ y6 (compensation term for y)

n = [y ] (rounded to the nearest integer)

f = (y −n )+ t

Finally, r is computed by f · (π/2).

4 Implementation on SPARC

A variant of the above algorithm was implemented for SPARC by SunPro, and is incorporated in the

libm which ships with SPARCompilers. Single, double and quadruple precision trigonometric func-

tions are included. Loss of significant bits is detected as a special case, and extra bits are used to

compute f and r. The accuracy of sin(x ) and cos(x ) over the entire range is below one ULP.

Essentially there are three cases. For small arguments, there is no reduction required. For medium

size arguments, table driven algorithms which are only a few percent slower than simpler algorithms

LATEX ed by Derek O’Connor, September 3, 2006 7



5. References

which provide worse (and in the extreme cases, significantly worse) quality results, are employed. For

huge arguments, methods such as described in this paper are employed. Being correct is a virtue in

and of itself!
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Editing Notes: This is a TEXed version of the original, with minor editing.

Original has no figure captions.
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